Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan-Gunnar Winther is active.

Publication


Featured researches published by Jan-Gunnar Winther.


Nature | 2004

Eight glacial cycles from an Antarctic ice core

Laurent Augustin; Carlo Barbante; Piers R F Barnes; Jean Marc Barnola; Matthias Bigler; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Barbara Delmonte; Gabrielle Dreyfus; Gaël Durand; S. Falourd; Hubertus Fischer; Jacqueline Flückiger; M. Hansson; Philippe Huybrechts; Gérard Jugie; Sigfus J Johnsen; Jean Jouzel; Patrik R Kaufmann; Josef Kipfstuhl; Fabrice Lambert; Vladimir Ya. Lipenkov; Geneviève C Littot; Antonio Longinelli; Reginald Lorrain; Valter Maggi; Valérie Masson-Delmotte; Heinz Miller

The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are often poorly resolved. Moreover, it is not possible to infer the abundance of greenhouse gases in the atmosphere from marine records. Here we report the recovery of a deep ice core from Dome C, Antarctica, that provides a climate record for the past 740,000 years. For the four most recent glacial cycles, the data agree well with the record from Vostok. The earlier period, between 740,000 and 430,000 years ago, was characterized by less pronounced warmth in interglacial periods in Antarctica, but a higher proportion of each cycle was spent in the warm mode. The transition from glacial to interglacial conditions about 430,000 years ago (Termination V) resembles the transition into the present interglacial period in terms of the magnitude of change in temperatures and greenhouse gases, but there are significant differences in the patterns of change. The interglacial stage following Termination V was exceptionally long—28,000 years compared to, for example, the 12,000 years recorded so far in the present interglacial period. Given the similarities between this earlier warm period and today, our results may imply that without human intervention, a climate similar to the present one would extend well into the future.


Nature | 2006

One-to-one coupling of glacial climate variability in Greenland and Antarctica.

Carlo Barbante; Jean-Marc Barnola; Silvia Becagli; J. Beer; Matthias Bigler; Claude F. Boutron; Thomas Blunier; E. Castellano; Olivier Cattani; J. Chappellaz; Dorthe Dahl-Jensen; Maxime Debret; Barbara Delmonte; Dorothee Dick; S. Falourd; S. H. Faria; Urs Federer; Hubertus Fischer; Johannes Freitag; Andreas Frenzel; Diedrich Fritzsche; Felix Fundel; Paolo Gabrielli; Vania Gaspari; Rainer Gersonde; Wolfgang Graf; D. Grigoriev; Ilka Hamann; M. Hansson; George R. Hoffmann

Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland through the Atlantic meridional overturning circulation. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.


Reviews of Geophysics | 2001

Measuring snow and glacier ice properties from satellite

Max König; Jan-Gunnar Winther; Elisabeth Isaksson

Satellite remote sensing is a convenient tool for studying snow and glacier ice, allowing us to conduct research over large and otherwise inaccessible areas. This paper reviews various methods for measuring snow and glacier ice properties with satellite remote sensing. These methods have been improving with the use of new satellite sensors, like the synthetic aperture radar (SAR) during the last decade, leading to the development of new and powerful methods, such as SAR interferometry for glacier velocity, digital elevation model generation of ice sheets, or snow cover mapping. Some methods still try to overcome the limitations of present sensors, but future satellites will have much increased capability, for example, the ability to measure the whole optical spectrum or SAR sensors with multiple polarization or frequencies. Among the methods presented are the satellite-derived determination of surface albedo, snow extent, snow volume, snow grain size, surface temperature, glacier facies, glacier velocities, glacier extent, and ice sheet topography. In this review, emphasis is put on the principles and theory of each satellite remote sensing method. An extensive list of references, with an emphasis on studies from the 1990s, allows the reader to delve into specific topics.


Polar Research | 2003

Glaciers in Svalbard: mass balance, runoff and freshwater flux

Jon Ove Hagen; Jack Kohler; Kjetil Melvold; Jan-Gunnar Winther

Gain or loss of the freshwater stored in Svalbard glaciers has both global implications for sea level and, on a more local scale, impacts upon the hydrology of rivers and the freshwater flux to fjords. This paper gives an overview of the potential runoff from the Svalbard glaciers. The freshwater flux from basins of different scales is quantified. In small basins (A < 10 km2), the extra runoff due to the negative mass balance of the glaciers is related to the proportion of glacier cover and can at present yield more than 20% higher runoff than if the glaciers were in equilibrium with the present climate. This does not apply generally to the ice masses of Svalbard, which are mostly much closer to being in balance. The total surface runoff from Svalbard glaciers due to melting of snow and ice is roughly 25 ± 5 km3 a?1, which corresponds to a specific runoff of 680 ± 140 mm a?1, only slightly more than the annual snow accumulation. Calving of icebergs from Svalbard glaciers currently contributes significantly to the freshwater flux and is estimated to be 4 ± 1 km3 a?1 or about 110 mm a?1.


Journal of Glaciology | 1999

Climate variables along a traverse line in Dronning Maud Land, East Antarctica

Michiel R. van den Broeke; Jan-Gunnar Winther; Elisabeth Isaksson; Jean Francis Pinglot; Lars Karlöf; Trond Eiken; Louk Conrads

Temperature, density and accumulation data were obtained from sha]low firn cores, drilled during an overland traverse through a previously unknown part of Dronning Maud Land, East Antarctica. The traverse area is characterised by high mountains that obstruct the ice flow, resulting in a sudden transition from the polar plateau to the coastal region. The spatial variations of potential temperature, ncar-surface firn density and accumulation suggest that katabatic winds are active in this region. Proxy wind data derived [rom fim-density profiles confirm that annual mean wind speed is strongly related to the magnitude of the surface slope. The high elevation of the ice sheet south of the mountains makes for a dry, cold climate, in which mass loss owing to sublimation is small and erosion of snow by the wind has a potentially large impact on the surface mass balance. A simple katabatic-wind model is used to explain the variations o[ accumulation along the traverse line in terms o[ divergence/convergence of the local transport o[ drifting snow.The resulting windand snowdrift patterns are c1ose]yconnected to the topography of the ice sheet: ridges are especially sensitive to erosion, while ice streams and other depressions act as collectors of drifting snow.


Journal of Climate | 2005

Antarctic Surface and Subsurface Snow and Ice Melt Fluxes

Glen E. Liston; Jan-Gunnar Winther

Abstract This paper presents modeled surface and subsurface melt fluxes across near-coastal Antarctica. Simulations were performed using a physical-based energy balance model developed in conjunction with detailed field measurements in a mixed snow and blue-ice area of Dronning Maud Land, Antarctica. The model was combined with a satellite-derived map of Antarctic snow and blue-ice areas, 10 yr (1991–2000) of Antarctic meteorological station data, and a high-resolution meteorological distribution model, to provide daily simulated melt values on a 1-km grid covering Antarctica. Model simulations showed that 11.8% and 21.6% of the Antarctic continent experienced surface and subsurface melt, respectively. In addition, the simulations produced 10-yr averaged subsurface meltwater production fluxes of 316.5 and 57.4 km3 yr−1 for snow-covered and blue-ice areas, respectively. The corresponding figures for surface melt were 46.0 and 2.0 km3 yr−1, respectively, thus demonstrating the dominant role of subsurface ov...


Journal of Glaciology | 2001

Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data

Jan-Gunnar Winther; Martin Norman Jespersen; Glen E. Liston

We have mapped Antarctic blue-ice areas using the U.S. National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) Antarctica cloud-free image mosaic established by the United States Geological Survey. The mosaic consists of 38 scenes acquired from 1980 to 1994. Our results show that approximately 60 000 km 2 of blue ice exist for each of the two main types of blue ice: “melt-induced” and “wind-induced”. Normally, the former type is located on slopes in coastal areas where climate conditions (i.e. persistent winds and temperature), together with favourable surface orientation, sustain conditions for surface and near surface melt. The latter blue-ice category occurs near mountains or on outlet glaciers, often at higher elevations, where persistent winds erode snow away year-round, and combined with sublimation creates areas of net ablation. Furthermore, we have identified an additional area of 121 000 km 2 as having potential for blue ice. However, in these areas features such as mixed pixels, glazed snow surfaces, crevasses and/or shadows make interpretation more uncertain. In conclusion, a conservative estimate of Antarctic blue-ice area coverage by this method is found to be 120 000 km 2 (∼0.8% of the Antarctic continent), with a potential maximum of 241 000 km 2 (∼1.6% of the Antarctic continent).


Journal of Geophysical Research | 2000

A 1500 year record of accumulation at Amundsenisen western Dronning Maud Land, Antarctica, derived from electrical and radioactive measurements on a 120 m ice core

Lars Karlöf; Jan-Gunnar Winther; Elisabeth Isaksson; Jack Kohler; Jean Francis Pinglot; Frank Wilhelms; M. Hansson; Per Holmlund; M. Nyman; Rickard Pettersson; M. Stenberg; M. Thomassen; C. van der Veen; R. S. W. van de Wal

During the Nordic EPICA pre-site survey in Dronning Maud Land in 1997/1998 a 120 m long ice core was retrieved (76°00′S 08°03′W, 2400 m above sea level). The whole core has been measured using the electric conductivity measurement (ECM) and dielectric profiling (DEP) techniques, and the core chronology has been established by detecting major volcanic eruptions. In a nearby shallow core radioactive traces from nuclear tests conducted during the 1950s and 1960s have been identified. Altogether, 13 ECM and DEP peaks in the long core are identified as originating from specific volcanic eruptions. In addition two peaks of increased total β activity are identified in the short core. Accumulation is calculated as averages over the time periods between these dated events. Accumulation rate is 62 millimetres (w. eq./yr) for the last 181 years (1816 A.D. to present) and 61 mm w. eq./yr for the last 1457 years (540 A.D. to present). Our record shows an 8% decrease in accumulation between 1452 and 1641 A.D. (i.e. part of the Little Ice Age), compared to the long-term mean.


Antarctic Science | 2000

Snow and blue-ice distribution patterns on the coastal Antarctic Ice Sheet

Glen E. Liston; Jan-Gunnar Winther; Oddbjørn Bruland; Hallgeir Elvehøy; Knut Sand; Lars Karlöf

Surface patterns of alternating snow and blue-ice bands are found in the Jutulgryta area of Dronning Maud Land, Antarctica. The snow-accumulation regions exist in the lee of blue-ice topographic ridges aligned perpendicular to winter winds. The snow bands are c. 500–2000 m wide and up to several kilometres long. In Jutulgryta, these features cover c. 5000 km2. These alternating snow and blue-ice bands are simulated using a snow transport and redistribution model, SnowTran-3D, that is driven with a winter cycle of observed daily screen-height air temperature, humidity, and wind speed and direction. The snow-transport model is coupled to a wind model that simulates wind flow over the relatively complex topography. Model results indicate that winter winds interact with the ice topographic features to produce alternating surface patterns of snow accumulation and erosion. In addition, model sensitivity simulations suggest that subtle topographic variations, on the order of 5m elevation change over a horizontal distance of 1 to 1.5 km, can lead to snow-accumulation variations that differ by a factor of six. This result is expected to have important consequences regarding the choice of sites for ice-coring efforts in Antarctica and elsewhere.


Remote Sensing of Environment | 2001

Glaciological applications with Landsat-7 imagery: Early assessments

Robert Bindschadler; Julian A. Dowdeswell; Dorothy K. Hall; Jan-Gunnar Winther

Enhanced Thematic Mapper Plus (ETM+) data from Landsat-7 are providing glaciologists with an ever-expanding data set that makes a comprehensive monitoring of the global cryosphere feasible for the first time in history. Examples of ETM+ data illustrate its ability to satisfy major scientific needs in the glaciological subdisciplines of sea-ice, glacier, ice-cap, and ice-sheet research with high-resolution optical satellite imagery. Examples shown include use as proxy ground-truth, positioning glacier termini and snowlines, and determining snow facies boundaries. The additional ETM+ panchromatic band, at a higher spatial resolution of 15 m, improves the spatial accuracy of these applications. The glaciological aspects of the Landsat-7 Long-Term Acquisition Plan are discussed to show how the timing and location of the image acquisitions will generate a cryospheric data set of unprecedented utility for future research.

Collaboration


Dive into the Jan-Gunnar Winther's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars Karlöf

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Chappellaz

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Olivier Cattani

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

S. Falourd

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Barbara Delmonte

University of Milano-Bicocca

View shared research outputs
Researchain Logo
Decentralizing Knowledge