Jan H. Bergmann
Cold Spring Harbor Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan H. Bergmann.
The EMBO Journal | 2011
Jan H. Bergmann; Mariluz Gómez Rodríguez; Nuno Martins; Hiroshi Kimura; David A. Kelly; Hiroshi Masumoto; Vladimir Larionov; Lars E. T. Jansen; William C. Earnshaw
Kinetochores assemble on distinct ‘centrochromatin’ containing the histone H3 variant CENP‐A and interspersed nucleosomes dimethylated on H3K4 (H3K4me2). Little is known about how the chromatin environment at active centromeres governs centromeric structure and function. Here, we report that centrochromatin resembles K4–K36 domains found in the body of some actively transcribed housekeeping genes. By tethering the lysine‐specific demethylase 1 (LSD1), we specifically depleted H3K4me2, a modification thought to have a role in transcriptional memory, from the kinetochore of a synthetic human artificial chromosome (HAC). H3K4me2 depletion caused kinetochores to suffer a rapid loss of transcription of the underlying α‐satellite DNA and to no longer efficiently recruit HJURP, the CENP‐A chaperone. Kinetochores depleted of H3K4me2 remained functional in the short term, but were defective in incorporation of CENP‐A, and were gradually inactivated. Our data provide a functional link between the centromeric chromatin, α‐satellite transcription, maintenance of CENP‐A levels and kinetochore stability.
Current Opinion in Cell Biology | 2014
Jan H. Bergmann; David L. Spector
Long non-coding (lnc)RNAs are emerging key factors in the regulation of various cellular processes. In the nucleus, these include the organization of nuclear sub-structures, the alteration of chromatin state, and the regulation of gene expression through the interaction with effector proteins and modulation of their activity. Collectively, lncRNAs form the core of attractive models explaining aspects of structural and dynamic regulation in the nucleus across time and space. Here we review recent studies that characterize the molecular function of a subset of these molecules in the regulation and fine-tuning of nuclear state.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Robert D. Bell; Xiaochun Long; Mingyan Lin; Jan H. Bergmann; Vivek Nanda; Sarah L. Cowan; Qian Zhou; Yu Han; David L. Spector; Deyou Zheng; Joseph M. Miano
Objective—Long noncoding RNAs (lncRNAs) represent a rapidly growing class of RNA genes with functions related primarily to transcriptional and post-transcriptional control of gene expression. There is a paucity of information about lncRNA expression and function in human vascular cells. Thus, we set out to identify novel lncRNA genes in human vascular smooth muscle cells and to gain insight into their role in the control of smooth muscle cell phenotypes. Approach and Results—RNA sequencing (RNA-seq) of human coronary artery smooth muscle cells revealed 31 unannotated lncRNAs, including a vascular cell–enriched lncRNA (Smooth muscle and Endothelial cell–enriched migration/differentiation-associated long NonCoding RNA [SENCR]). Strand-specific reverse transcription polymerase chain reaction (PCR) and rapid amplification of cDNA ends indicate that SENCR is transcribed antisense from the 5′ end of the FLI1 gene and exists as 2 splice variants. RNA fluorescence in situ hybridization and biochemical fractionation studies demonstrate SENCR is a cytoplasmic lncRNA. Consistent with this observation, knockdown studies reveal little to no cis-acting effect of SENCR on FLI1 or neighboring gene expression. RNA-seq experiments in smooth muscle cells after SENCR knockdown disclose decreased expression of Myocardin and numerous smooth muscle contractile genes, whereas several promigratory genes are increased. Reverse transcription PCR and Western blotting experiments validate several differentially expressed genes after SENCR knockdown. Loss-of-function studies in scratch wound and Boyden chamber assays support SENCR as an inhibitor of smooth muscle cell migration. Conclusions—SENCR is a new vascular cell–enriched, cytoplasmic lncRNA that seems to stabilize the smooth muscle cell contractile phenotype.
The EMBO Journal | 2012
Jun-ichirou Ohzeki; Jan H. Bergmann; Natalay Kouprina; Vladimir N. Noskov; Megumi Nakano; Hiroshi Kimura; William C. Earnshaw; Vladimir Larionov; Hiroshi Masumoto
The kinetochore is responsible for accurate chromosome segregation. However, the mechanism by which kinetochores assemble and are maintained remains unclear. Here we report that de novo CENP‐A assembly and kinetochore formation on human centromeric alphoid DNA arrays is regulated by a histone H3K9 acetyl/methyl balance. Tethering of histone acetyltransferases (HATs) to alphoid DNA arrays breaks a cell type‐specific barrier for de novo stable CENP‐A assembly and induces assembly of other kinetochore proteins at the ectopic alphoid site. Similar results are obtained following tethering of CENP‐A deposition factors hMis18α or HJURP. HAT tethering bypasses the need for hMis18α, but HJURP is still required for de novo kinetochore assembly. In contrast, H3K9 methylation following tethering of H3K9 tri‐methylase (Suv39h1) to the array prevents de novo CENP‐A assembly and kinetochore formation. CENP‐A arrays assembled de novo by this mechanism can form human artificial chromosomes (HACs) that are propagated indefinitely in human cells.
Journal of Cell Science | 2012
Jan H. Bergmann; Julia N. Jakubsche; Nuno Martins; Alexander Kagansky; Megumi Nakano; Hiroshi Kimura; David A. Kelly; Bryan M. Turner; Hiroshi Masumoto; Vladimir Larionov; William C. Earnshaw
Human kinetochores are transcriptionally active, producing very low levels of transcripts of the underlying alpha-satellite DNA. However, it is not known whether kinetochores can tolerate acetylated chromatin and the levels of transcription that are characteristic of housekeeping genes, or whether kinetochore-associated ‘centrochromatin’, despite being transcribed at a low level, is essentially a form of repressive chromatin. Here, we have engineered two types of acetylated chromatin within the centromere of a synthetic human artificial chromosome. Tethering a minimal NF-κB p65 activation domain within kinetochore-associated chromatin produced chromatin with high levels of histone H3 acetylated on lysine 9 (H3K9ac) and an ~10-fold elevation in transcript levels, but had no substantial effect on kinetochore assembly or function. By contrast, tethering the herpes virus VP16 activation domain produced similar modifications in the chromatin but resulted in an ~150-fold elevation in transcripts, approaching the level of transcription of an endogenous housekeeping gene. This rapidly inactivated kinetochores, causing a loss of assembled CENP-A and blocking further CENP-A assembly. Our data reveal that functional centromeres in vivo show a remarkable plasticity – kinetochores tolerate profound changes to their chromatin environment, but appear to be critically sensitive to the level of centromeric transcription.
Developmental Cell | 2014
Mélanie A. Eckersley-Maslin; David Thybert; Jan H. Bergmann; John C. Marioni; Paul Flicek; David L. Spector
Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA-sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs, respectively, a 5.6-fold increase upon differentiation. Although DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation and, for some genes, is compensated for by the cell to maintain the required transcriptional output of these genes.
Nucleus | 2013
Mélanie A. Eckersley-Maslin; Jan H. Bergmann; Zsolt Lazar; David L. Spector
The pluripotent nature of embryonic stem cells (ESC) is associated with a dynamic open chromatin state and an irregular nuclear shape. It has been postulated that the absence of Lamin A/C contributes to these features. However, we show that mouse ESCs express low, yet readily detectable, amounts of Lamin A/C at both the RNA and protein levels. Full-length transcripts of both isoforms were readily detected by q-PCR and deep RNA sequencing. Additionally, protein expression was validated in multiple primary and established ESC lines by immunoblotting using several independent antibodies. Immunofluorescence labeling showed localization of Lamin A/C at the nuclear periphery of all Oct4/Nanog double-positive ESC lines examined, as well as in the inner cell mass of blastocysts. Our results demonstrate ESCs do express low levels of Lamin A/C, thus models linking pluripotency and nuclear dynamics with the absence of Lamin A/C need to be revisited.
Journal of Cell Biology | 2009
Zhenjie Xu; Hiromi Ogawa; Paola Vagnarelli; Jan H. Bergmann; Damien F. Hudson; Sandrine Ruchaud; Tatsuo Fukagawa; William C. Earnshaw; Kumiko Samejima
Dynamic localization of the chromosomal passenger complex (CPC) during mitosis is essential for its diverse functions. CPC targeting to centromeres involves interactions between Survivin, Borealin, and the inner centromere protein (CENP [INCENP]) N terminus. In this study, we investigate how interactions between the INCENP C terminus and aurora B set the level of kinase activity. Low levels of kinase activity, seen in INCENP-depleted cells or in cells expressing a mutant INCENP that cannot bind aurora B, are sufficient for a spindle checkpoint response when microtubules are absent but not against low dose taxol. Intermediate kinase activity levels obtained with an INCENP mutant that binds aurora B but cannot fully activate it are sufficient for a robust response against taxol, but cannot trigger CPC transfer from the chromosomes to the anaphase spindle midzone. This transfer requires significantly higher levels of aurora B activity. These experiments reveal that INCENP interactions with aurora B in vivo modulate the level of kinase activity, thus regulating CPC localization and functions during mitosis.
Molecular Biology of the Cell | 2009
Stefano Cardinale; Jan H. Bergmann; David A. Kelly; Megumi Nakano; Manuel M. Valdivia; Hiroshi Kimura; Hiroshi Masumoto; Vladimir Larionov; William C. Earnshaw
We previously used a human artificial chromosome (HAC) with a synthetic kinetochore that could be targeted with chromatin modifiers fused to tetracycline repressor to show that targeting of the transcriptional repressor tTS within kinetochore chromatin disrupts kinetochore structure and function. Here we show that the transcriptional corepressor KAP1, a downstream effector of the tTS, can also inactivate the kinetochore. The disruption of kinetochore structure by KAP1 subdomains does not simply result from loss of centromeric CENP-A nucleosomes. Instead it reflects a hierarchical disruption of the outer kinetochore, with CENP-C levels falling before CENP-A levels and, in certain instances, CENP-H being lost more readily than CENP-C. These results suggest that this novel approach to kinetochore dissection may reveal new patterns of protein interactions within the kinetochore.
Chromosome Research | 2012
Jan H. Bergmann; Nuno Martins; Vladimir Larionov; Hiroshi Masumoto; William C. Earnshaw
The centromere is a specialized chromosomal region that serves as the assembly site of the kinetochore. At the centromere, CENP-A nucleosomes form part of a chromatin landscape termed centrochromatin. This chromatin environment conveys epigenetic marks regulating kinetochore formation. Recent work sheds light on the intricate relationship between centrochromatin state, the CENP-A assembly pathway and the maintenance of centromere function. Here, we review the emerging picture of how chromatin affects mammalian kinetochore formation. We place particular emphasis on data obtained from Human Artificial Chromosome (HAC) biology and the targeted engineering of centrochromatin using synthetic HACs. We discuss implications of these findings, which indicate that a delicate balance of histone modifications and chromatin state dictates both de novo centromere formation and the maintenance of centromere identity in dividing cell populations.