Jan H. Fleckenstein
Helmholtz Centre for Environmental Research - UFZ
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan H. Fleckenstein.
Environmental Earth Sciences | 2013
Peter Grathwohl; Hermann Rügner; Thomas Wöhling; Karsten Osenbrück; Marc Schwientek; Sebastian Gayler; Ute Wollschläger; Benny Selle; Marion Pause; Jens-Olaf Delfs; Matthias Grzeschik; Ulrich Weller; Martin Ivanov; Olaf A. Cirpka; Uli Maier; Volker Wulfmeyer; Thilo Streck; Sabine Attinger; Peter Dietrich; Jan H. Fleckenstein; Olaf Kolditz; Hans-Jörg Vogel
Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.
Journal of Geophysical Research | 2014
Nico Trauth; Christian Schmidt; Michael Vieweg; Uli Maier; Jan H. Fleckenstein
At the interface between stream water, groundwater, and the hyporheic zone (HZ), important biogeochemical processes that play a crucial role in fluvial ecology occur. Solutes that infiltrate into the HZ can react with each other and possibly also with upwelling solutes from the groundwater. In this study, we systematically evaluate how variations of gaining and losing conditions, stream discharge, and pool-riffle morphology affect aerobic respiration (AR) and denitrification (DN) in the HZ. For this purpose, a computational fluid dynamics model of stream water flow is coupled to a reactive transport model. Scenarios of variations of the solute concentration in the upwelling groundwater were conducted. Our results show that solute influx, residence time, and the size of reactive zones strongly depend on presence, magnitude, and direction of ambient groundwater flow. High magnitudes of ambient groundwater flow lower AR efficiency by up to 4 times and DN by up to 3 orders of magnitude, compared to neutral conditions. The influence of stream discharge and morphology on the efficiency of AR and DN are minor, in comparison to that of ambient groundwater flow. Different scenarios of O2 and NO3 concentrations in the upwelling groundwater reveal that DN efficiency of the HZ is highest under low upwelling magnitudes accompanied with low concentrations of O2 and NO3. Our results demonstrate how ambient groundwater flow influences solute transport, AR, and DN in the HZ. Neglecting groundwater flow in stream-groundwater interactions would lead to a significant overestimation of the efficiency of biogeochemical reactions in fluvial systems.
Water Resources Research | 2015
Nico Trauth; Christian Schmidt; Michael Vieweg; Sascha E. Oswald; Jan H. Fleckenstein
Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m × 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.
Water Resources Research | 2014
Stefan Krause; Fulvio Boano; Mark O. Cuthbert; Jan H. Fleckenstein; Jörg Lewandowski
[1] This paper introduces the special section on “new modeling approaches and novel experimental technologies for improved understanding of process dynamics at aquifer-surface water interfaces.” It is contextualizing the framework for the 27 research papers of the special section by firth identifying research gaps and imminent challenges for ecohydrological research at aquifer-surface water interfaces and then discussing the specific paper contributions on (i) new developments in temperature/heat tracing at GW-SW interfaces, (ii) new methods to capture the temporal and spatial variability of groundwater—surface water exchange, (iii) new approaches in modeling aquifer-river exchange flow, and (iv) new concepts and advanced theory of groundwater—surface water exchange.
Environmental Modelling and Software | 2014
Sven Frei; Jan H. Fleckenstein
An adequate representation of micro-topography in spatially explicit, physically based models can be crucial in modeling runoff generation, surface/subsurface flow interactions or subsurface flow patterns in hydrological systems with pronounced micro-topography. However, representation of micro-topography in numerical models usually requires high grid resolutions to capture relevant small scale variations in topography at the range of centimeters to meters. High grid resolutions usually result in longer simulation times, especially if fully integrated model approaches are used where the governing partial differential equations for surface and subsurface flow are solved simultaneously. This often restricts the implementation of micro-topography to plot scale models where the overall model domain is small to minimize computational cost resulting from a high grid resolution. In this study an approach is presented where a highly resolved digital elevation model (DEM) for a hummocky topography in a plot scale wetland model (10 m x 21 m x 2 m), is represented by spatially distributed rill/depression storage zones in a numerical model with a planar surface. By replacing the explicit micro-topography with spatially distributed rill/depression storage zones, important effects of micro-topography on surface flow generation and subsurface transport characteristics (e.g. residence time distributions) are being preserved, while at the same time the number of computational nodes is reduced significantly. We demonstrate that the rill/depression storage concept, which has been used for some time to represent time delays in the generation of surface runoff, can also be used to mimic subsurface flow patterns caused by micro-topography. Results further indicate that the rill/depression storage concept is an efficient tool to represent micro-topography in plot scale models because model computation times drop significantly. As important aspects of surface and subsurface flows induced by micro-topography can be mimicked adequately by applying the rill/depression storage concept on a coarser grid, it may also be a useful tool to represent micro-topography in numerical flow models beyond the plot scale.
Environmental Earth Sciences | 2017
Ute Wollschläger; Sabine Attinger; Dietrich Borchardt; Mario Brauns; Matthias Cuntz; Peter Dietrich; Jan H. Fleckenstein; Kurt Friese; Jan Friesen; Alexander Harpke; Anke Hildebrandt; Greta Jäckel; Norbert Kamjunke; Kay Knöller; Simon Kögler; Olaf Kolditz; Ronald Krieg; Rohini Kumar; Angela Lausch; Matthias Liess; Andreas Marx; Ralf Merz; Christin Mueller; Andreas Musolff; Helge Norf; Sascha E. Oswald; Corinna Rebmann; Frido Reinstorf; Michael Rode; Karsten Rink
This article provides an overview about the Bode River catchment that was selected as the hydrological observatory and main region for hydro-ecological research within the TERrestrial ENvironmental Observatories Harz/Central German Lowland Observatory. It first provides information about the general characteristics of the catchment including climate, geology, soils, land use, water quality and aquatic ecology, followed by the description of the interdisciplinary research framework and the monitoring concept with the main components of the multi-scale and multi-temporal monitoring infrastructure. It also shows examples of interdisciplinary research projects aiming to advance the understanding of complex hydrological processes under natural and anthropogenic forcings and their interactions in a catchment context. The overview is complemented with research work conducted at a number of intensive research sites, each focusing on a particular functional zone or specific components and processes of the hydro-ecological system.
Water Resources Research | 2017
Stefan Krause; Jörg Lewandowski; Nancy B. Grimm; David M. Hannah; Gilles Pinay; Karlie McDonald; Eugènia Martí; Alba Argerich; Laurent Pfister; Julian Klaus; Tom J. Battin; Scott T. Larned; Jacob Schelker; Jan H. Fleckenstein; Christian Schmidt; Michael O. Rivett; Glenn Watts; Francesc Sabater; Albert Sorolla; Valentina Turk
The movement of water, matter, organisms, and energy can be altered substantially at ecohydrological interfaces, the dynamic transition zones that often develop within ecotones or boundaries between adjacent ecosystems. Interdisciplinary research over the last two decades has indicated that ecohydrological interfaces are often “hot spots” of ecological, biogeochemical, and hydrological processes and may provide refuge for biota during extreme events. Ecohydrological interfaces can have significant impact on global hydrological and biogeochemical cycles, biodiversity, pollutant removal, and ecosystem resilience to disturbance. The organizational principles (i.e., the drivers and controls) of spatially and temporally variable processes at ecohydrological interfaces are poorly understood and require the integrated analysis of hydrological, biogeochemical, and ecological processes. Our rudimentary understanding of the interactions between different drivers and controls critically limits our ability to predict complex system responses to change. In this paper, we explore similarities and contrasts in the functioning of diverse freshwater ecohydrological interfaces across spatial and temporal scales. We use this comparison to develop an integrated, interdisciplinary framework, including a roadmap for analyzing ecohydrological processes and their interactions in ecosystems. We argue that, in order to fully account for their nonlinear process dynamics, ecohydrological interfaces need to be conceptualized as unique, spatially and temporally dynamic entities, which represents a step change from their current representation as boundary conditions at investigated ecosystems.
Water Resources Research | 2016
A. Fox; Gerrit Laube; Christian Schmidt; Jan H. Fleckenstein; Shai Arnon
Bed form-induced hyporheic exchange flux (qH) is increasingly viewed as a key process controlling water fluxes and biogeochemical processes in river networks. Despite the fact that streambeds are inherently heterogeneous, the majority of bed form flume scale studies were done on homogeneous systems. We conducted salt and dye tracer experiments to study the effects of losing and gaining flow conditions on qH using a laboratory recirculating flume system packed with a heterogeneous streambed, and equipped with a drainage system that enabled us to apply losing or gaining fluxes. We found that when either losing or gaining fluxes increased (regardless of whether the flux was upward or downward), qH followed an exponential decline, the volume of the hyporheic flow cell drastically reduced, and the mean residence times declined moderately. A numerical flow model for the heterogeneous streambed was set up and fitted against the experimental data in order to test whether an equivalent homogeneous case exists. The measured qH were accurately predicted with the heterogeneous model, while it was underestimated using a homogeneous model characterized by the geometric mean of the hydraulic conductivity. It was also shown that in order to produce the results of the heterogeneous model with an equivalent hydraulic conductivity, the latter had to be increased as the losing or gaining fluxes increase. The results strongly suggest that it is critical to adequately account for the heterogeneous streambed structure in order to accurately predict the effect of vertical exchange fluxes between the stream and groundwater on hyporheic exchange. This article is protected by copyright. All rights reserved.
Water Resources Research | 2017
Nico Trauth; Jan H. Fleckenstein
In this study, we investigate the impact of single stream discharge events on water exchange, solute transport, and reactions in the hyporheic zone below a natural in-stream gravel bar. We set up a reactive transport groundwater model with streamflow scenarios that vary by event duration and peak discharge. A steady ambient groundwater flow field is assumed that results in losing, neutral, or gaining stream conditions depending on the stream stage. Across the streambed dissolved oxygen, organic carbon, and nitrate are transported into the subsurface. Additional nitrate is received from upwelling groundwater. Aerobic respiration and denitrification are simulated for scenarios with different stream solute concentrations. Results show that hyporheic exchange flux, solute transport, and consumption increase during events. However, their intensities depend highly on the interplay between event characteristics and ambient groundwater conditions. During events where reversals in the hydraulic gradient occur stream water and solutes infiltrate deeper into the aquifer where they have more time to react. For those events, the reactive efficiency of the hyporheic zone (solute consumption as fraction of influx) for aerobic respiration and denitrification is up to 2.7 and 10 times higher compared to base flow conditions. The fraction of stream nitrate load consumed in the hyporheic zone increases with stream discharge (up to 150 mg/m2/h), but remains below the value under base flow conditions for weak events. Events also increase denitrification of groundwater borne nitrate, but groundwater nitrate flux to the stream decreases by up to 33% due to temporary gradient reversals.
Water Resources Research | 2016
Noah M. Schmadel; Adam S. Ward; Marie J. Kurz; Jan H. Fleckenstein; Jay P. Zarnetske; David M. Hannah; Theresa Blume; Michael Vieweg; Phillip J. Blaen; Christian Schmidt; Julia L. A. Knapp; Megan J. Klaar; Paul Romeijn; Thibault Datry; Toralf Keller; Silvia Folegot; Amaia I. Marruedo Arricibita; Stefan Krause
Improved understanding of stream solute transport requires meaningful comparison of processes across a wide range of discharge conditions and spatial scales. At reach scales where solute tracer tests are commonly used to assess transport behavior, such comparison is still confounded due to the challenge of separating dispersive and transient storage processes from the influence of the advective timescale that varies with discharge and reach length. To better resolve interpretation of these processes from field-based tracer observations, we conducted recurrent conservative solute tracer tests along a 1 km study reach during a storm discharge period and further discretized the study reach into six segments of similar length but different channel morphologies. The resulting suite of data, spanning an order of magnitude in advective timescales, enabled us to (1) characterize relationships between tracer response and discharge in individual segments and (2) determine how combining the segments into longer reaches influences interpretation of dispersion and transient storage from tracer tests. We found that the advective timescale was the primary control on the shape of the observed tracer response. Most segments responded similarly to discharge, implying that the influence of morphologic heterogeneity was muted relative to advection. Comparison of tracer data across combined segments demonstrated that increased advective timescales could be misinterpreted as a change in dispersion or transient storage. Taken together, our results stress the importance of characterizing the influence of changing advective timescales on solute tracer responses before such reach-scale observations can be used to infer solute transport at larger network scales.