Jan Hanuš
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Hanuš.
Journal of Biomedical Materials Research Part A | 2012
Marta Vandrovcová; Jan Hanuš; Martin Drábik; Ondrej Kylian; Hynek Biederman; Vera Lisa; Lucie Bacakova
Cell behavior depends strongly on the physical and chemical properties of the material surface, for example, its chemistry and topography. The authors have therefore assessed the influence of materials of different chemical composition (i.e., glass substrates with and without TiO(2) films in anatase form) and different surface roughness (R(a) = 0, 40, 100, or 170 nm) on the adhesion, proliferation, and osteogenic differentiation of human osteoblast-like MG63 cells. On day 1 after seeding, the largest cell spreading area was found on flat TiO(2) films (R(a) = 0 nm). On TiO(2) films with R(a) = 170 nm, the cell spreading area was larger and the number of initially adhering cells was higher than the values on the corresponding uncoated glass. On day 3 after seeding, the cell number was higher on the TiO(2) films (R(a) = 0 and 40 nm) than on the corresponding glass substrates and the standard polystyrene dishes. On day 7, all TiO(2) films contained higher cell numbers than the corresponding glass substrates, and the cells on the TiO(2) films with R(a) = 40 and 100 nm also contained a higher concentration of β-actin. These results indicate that TiO(2) coating had a positive influence on the adhesion and subsequent proliferation of MG63 cells. In addition, on all investigated materials, the cell population density achieved on day 7 decreased with increasing surface roughness. The concentration of osteocalcin, measured per mg of protein, was significantly lower in the cells on rougher TiO(2) films (R(a) = 100 and 170 nm) than in the cells on the polystyrene dishes. Thus, it can be concluded that the adhesion, growth, and phenotypic maturation of MG63 cells were controlled by the interplay between the material chemistry and surface topography, and were usually better on smoother and TiO(2)-coated surfaces than on rougher and uncoated glass substrates.
Journal of Physical Chemistry B | 2009
Andrei Choukourov; Andrey Grinevich; Oleksandr Polonskyi; Jan Hanuš; Jaroslav Kousal; Danka Slavínská; Hynek Biederman
Thermal degradation of poly(ethylene oxide) (PEO) was studied under vacuum conditions. PEO macromolecules degrade predominantly by random chain scission of a backbone with elimination of oligomer fragments. The reactions include the mechanism of radical termination by disproportionation. The eliminated fragments form thin film deposits which have chemical composition close to the original PEO. Activation of the evaporated flux with a glow discharge leads to further fragmentation and recombination of the released species and can be used to tune the properties of the resulting thin films.
Journal of Physics D | 2012
Francesco Fumagalli; Ondřej Kylián; Letizia Amato; Jan Hanuš; François Rossi
Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.
Journal of Physics D | 2009
Ondřej Kylián; Jan Hanuš; Andrei Choukourov; Jaroslav Kousal; Danka Slavínská; Hynek Biederman
RF magnetron sputtering of a nylon target in different gas mixtures was studied in order to evaluate the capability of this process to deposit amino-rich coatings needed in a wide range of biomedical applications. It has been demonstrated that both the deposition rate of the coatings and the surface density of primary amino groups are strongly linked with working gas mixture composition. From this point of view, a sufficiently high deposition rate as well as the highest amine efficiency reaching a NH2/C value of 18% was observed in the N2/H2 discharge, which leads to the surface exhibiting a high rate of protein adsorption.
Journal of Physics D | 2015
J Blažek; Jaroslav Kousal; Hynek Biederman; Ondřej Kylián; Jan Hanuš; Danka Slavínská
Clusters that grow into nanoparticles near the magnetron target of the gas aggregation cluster source (GAS) may acquire electric charge by collecting electrons and ions or through other mechanisms like secondary- or photo-electron emissions. The region of the GAS close to magnetron may be considered as stationary plasma. The steady state charge distribution on nanoparticles can be determined by means of three possible models—fluid model, kinetic model and model employing Monte Carlo simulations—of cluster charging. In the paper the mathematical and numerical aspects of these models are analyzed in detail and close links between them are clarified. Among others it is shown that Monte Carlo simulation may be considered as a particular numerical technique of solving kinetic equations. Similarly the equations of the fluid model result, after some approximation, from averaged kinetic equations. A new algorithm solving an in principle unlimited set of kinetic equations is suggested. Its efficiency is verified on physical models based on experimental input data.
Beilstein Journal of Nanotechnology | 2017
Andrei Choukourov; Pavel Pleskunov; Daniil Nikitin; Valerii Titov; Artem Shelemin; Mykhailo Vaidulych; Anna Kuzminova; Pavel Solař; Jan Hanuš; Jaroslav Kousal; Ondřej Kylián; Danka Slavínská; Hynek Biederman
This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.
Nanoscale | 2018
Jaroslav Kousal; Artem Shelemin; Matthias Schwartzkopf; Oleksandr Polonskyi; Jan Hanuš; Pavel Solař; Mykhailo Vaidulych; Daniil Nikitin; Pavel Pleskunov; Zdeněk Krtouš; Thomas Strunskus; Franz Faupel; Stephan V. Roth; Hynek Biederman; Andrei Choukourov
Magnetron discharge in a cold buffer gas represents a liquid-free approach to the synthesis of metal nanoparticles (NPs) with tailored structure, chemical composition and size. Despite a large number of metal NPs that were successfully produced by this method, the knowledge of the mechanisms of their nucleation and growth in the discharge is still limited, mainly because of the lack of in situ experimental data. In this work, we present the results of in situ Small Angle X-ray Scattering measurements performed in the vicinity of a Cu magnetron target with Ar used as a buffer gas. Condensation of atomic metal vapours is found to occur mainly at several mm distance from the target plane. The NPs are found to be captured preferentially within a region circumscribed by the magnetron plasma ring. In this capture zone, the NPs grow to the size of 90 nm whereas smaller ones sized 10-20 nm may escape and constitute a NP beam. Time-resolved measurements of the discharge indicate that the electrostatic force acting on the charged NPs may be largely responsible for their capturing nearby the magnetron.
Journal of Physical Chemistry B | 2018
Pavel Pleskunov; Daniil Nikitin; Renata Tafiichuk; Artem Shelemin; Jan Hanuš; Ivan Khalakhan; Andrei Choukourov
Carboxyl-enriched and size-selected polymer nanoparticles (NPs) may prove to be very useful in biomedical applications for linker-free binding of biomolecules and their transport to cells. In this study, we report about the synthesis of such NPs by low-pressure low-temperature pulsed plasma polymerization of acrylic acid. Gas aggregation cluster source was adapted to operate plasma with a constant pulse period of 50 μs and with varying duty cycle. The NPs were produced with the size ranging from 31 ± 5 to 93 ± 14 nm and with retention of the carboxyl groups ranging from 4.0 to 12.0 atom %. Two regimes of the NP formation were identified. In the large duty cycle regime, the NP growth was interfered with by positive ion bombardment which resulted in the ion-driven detachment of the carboxyl species and in the formation of carboxyl-deficient NPs. In the small duty cycle regime, the NP growth was accompanied by the radical-driven chain propagation with the attachment of intact monomer molecules. Improved efficacy of the monomer retention resulted in increased concentration of the carboxyl groups.
Beilstein Journal of Nanotechnology | 2018
Vladimir Popok; Cesarino M. Jeppesen; Peter Fojan; Anna Kuzminova; Jan Hanuš; Ondřej Kylián
Background: Antibacterial materials are of high importance for medicine, and for the production and conservation of food. Among these materials, polymer films with metal nanoparticles (NPs) are of considerable interest for many practical applications. Results: The paper describes a novel approach for the formation of bactericidal polymer thin films (polystyrene in this case), produced by spin-coating, with Ti and Cu NPs deposited from cluster beams. Ti NPs are treated in three different ways in order to study different approaches for oxidation and, thus, efficiency in formation of the particles with semiconducting properties required for the catalytic formation of reactive oxygen species. Cu NPs are used as deposited. Partial NP embedding into polystyrene is realised in a controllable manner using thermal annealing in order to improve surface adhesion and make the particles resistant against wash-out. The formed composite films with TiOx and Cu species are tested as bactericidal media using E.coli bacteria as model microorganisms. Conclusion: The obtained results show considerable efficiency in destroying the bacteria and a good possibility of multiple re-use of the same composite films making the suggested approach attractive for the cases requiring reusable polymer-based antibacterial media.
Thin Solid Films | 2012
Oleksandr Polonskyi; Pavel Solař; Ondřej Kylián; Martin Drábik; Anna Artemenko; Jaroslav Kousal; Jan Hanuš; Josef Pešička; Iva Matolínová; E. Kolíbalová; Danka Slavínská; Hynek Biederman