Jan Hegermann
Hannover Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Hegermann.
The EMBO Journal | 2010
Frits Kamp; Nicole Exner; Anne Kathrin Lutz; Nora Wender; Jan Hegermann; Bettina Brunner; Brigitte Nuscher; Tim Bartels; Armin Giese; Klaus Beyer; Stefan Eimer; Konstanze F. Winklhofer; Christian Haass
Aggregation of α‐synuclein (αS) is involved in the pathogenesis of Parkinsons disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age‐dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA‐mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ‐1 but not the PD‐associated mutations PINK1 G309D and parkin Δ1–79 or by DJ‐1 C106A.
Journal of Biological Chemistry | 2009
Julia Sämann; Jan Hegermann; Erika D. von Gromoff; Stefan Eimer; Ralf Baumeister; Enrico Schmidt
Mutations in two genes encoding the putative kinases LRRK2 and PINK1 have been associated with inherited variants of Parkinson disease. The physiological role of both proteins is not known at present, but studies in model organisms have linked their mutants to distinct aspects of mitochondrial dysfunction, increased vulnerability to oxidative and endoplasmic reticulum stress, and intracellular protein sorting. Here, we show that a mutation in the Caenorhabditits elegans homologue of the PTEN-induced kinase pink-1 gene resulted in reduced mitochondrial cristae length and increased paraquat sensitivity of the nematode. Moreover, the mutants also displayed defects in axonal outgrowth of a pair of canal-associated neurons. We demonstrate that in the absence of lrk-1, the C. elegans homologue of human LRRK2, all phenotypic aspects of pink-1 loss-of-function mutants were suppressed. Conversely, the hypersensitivity of lrk-1 mutant animals to the endoplasmic reticulum stressor tunicamycin was reduced in a pink-1 mutant background. These results provide the first evidence of an antagonistic role of PINK-1 and LRK-1. Due to the similarity of the C. elegans proteins to human LRRK2 and PINK1, we suggest a common role of both factors in cellular functions including stress response and regulation of neurite outgrowth. This study might help to link pink-1/PINK1 and lrk-1/LRRK2 function to the pathological processes resulting from Parkinson disease-related mutants in both genes, the first manifestations of which are cytoskeletal defects in affected neurons.
European Heart Journal | 2013
George Kensah; Angelica Roa Lara; Julia Dahlmann; Robert Zweigerdt; Kristin Schwanke; Jan Hegermann; David Skvorc; Azadeh Azizian; Stefan Wagner; Lars S. Maier; Andreas Krause; Gerald Dräger; Matthias Ochs; Axel Haverich; Ina Gruh; Ulrich Martin
AIMS We explored the use of highly purified murine and human pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) to generate functional bioartificial cardiac tissue (BCT) and investigated the role of fibroblasts, ascorbic acid (AA), and mechanical stimuli on tissue formation, maturation, and functionality. METHODS AND RESULTS Murine and human embryonic/induced PSC-derived CMs were genetically enriched to generate three-dimensional CM aggregates, termed cardiac bodies (CBs). Addressing the critical limitation of major CM loss after single-cell dissociation, non-dissociated CBs were used for BCT generation, which resulted in a structurally and functionally homogenous syncytium. Continuous in situ characterization of BCTs, for 21 days, revealed that three critical factors cooperatively improve BCT formation and function: both (i) addition of fibroblasts and (ii) ascorbic acid supplementation support extracellular matrix remodelling and CB fusion, and (iii) increasing static stretch supports sarcomere alignment and CM coupling. All factors together considerably enhanced the contractility of murine and human BCTs, leading to a so far unparalleled active tension of 4.4 mN/mm(2) in human BCTs using optimized conditions. Finally, advanced protocols were implemented for the generation of human PSC-derived cardiac tissue using a defined animal-free matrix composition. CONCLUSION BCT with contractile forces comparable with native myocardium can be generated from enriched, PSC-derived CMs, based on a novel concept of tissue formation from non-dissociated cardiac cell aggregates. In combination with the successful generation of tissue using a defined animal-free matrix, this represents a major step towards clinical applicability of stem cell-based heart tissue for myocardial repair.
Nature Cell Biology | 2011
Kristen Witte; Amber L. Schuh; Jan Hegermann; Ali Sarkeshik; Jonathan R. Mayers; Katrin Schwarze; John R. Yates; Stefan Eimer; Anjon Audhya
Export of proteins from the endoplasmic reticulum in COPII-coated vesicles occurs at defined sites that contain the scaffolding protein Sec16. We identify TFG-1, a new conserved regulator of protein secretion that interacts directly with SEC-16 and controls the export of cargoes from the endoplasmic reticulum in Caenorhabditis elegans. Hydrodynamic studies indicate that TFG-1 forms hexamers that facilitate the co-assembly of SEC-16 with COPII subunits. Consistent with these findings, TFG-1 depletion leads to a marked decline in both SEC-16 and COPII levels at endoplasmic reticulum exit sites. The sequence encoding the amino terminus of human TFG has been previously identified in chromosome translocation events involving two protein kinases, which created a pair of oncogenes. We propose that fusion of these kinases to TFG relocalizes their activities to endoplasmic reticulum exit sites, where they prematurely phosphorylate substrates during endoplasmic reticulum export. Our findings provide a mechanism by which translocations involving TFG can result in cellular transformation and oncogenesis.Export of proteins from the endoplasmic reticulum in COPII-coated vesicles occurs at defined sites that contain the scaffolding protein Sec16. We identify TFG-1, a new conserved regulator of protein secretion that interacts directly with SEC-16 and controls the export of cargoes from the endoplasmic reticulum in Caenorhabditis elegans. Hydrodynamic studies indicate that TFG-1 forms hexamers that facilitate the co-assembly of SEC-16 with COPII subunits. Consistent with these findings, TFG-1 depletion leads to a marked decline in both SEC-16 and COPII levels at endoplasmic reticulum exit sites. The sequence encoding the amino terminus of human TFG has been previously identified in chromosome translocation events involving two protein kinases, which created a pair of oncogenes. We propose that fusion of these kinases to TFG relocalizes their activities to endoplasmic reticulum exit sites, where they prematurely phosphorylate substrates during endoplasmic reticulum export. Our findings provide a mechanism by which translocations involving TFG can result in cellular transformation and oncogenesis.
Plant Journal | 2012
Cristina Dal Bosco; Alexander Dovzhenko; Xing Liu; Nina Woerner; Tatiana Rensch; Margitta Eismann; Stefan Eimer; Jan Hegermann; Ivan A. Paponov; Benedetto Ruperti; Erwin Heberle-Bors; Alisher Touraev; Jerry D. Cohen; Klaus Palme
The plant hormone auxin is a mobile signal which affects nuclear transcription by regulating the stability of auxin/indole-3-acetic acid (IAA) repressor proteins. Auxin is transported polarly from cell to cell by auxin efflux proteins of the PIN family, but it is not as yet clear how auxin levels are regulated within cells and how access of auxin to the nucleus may be controlled. The Arabidopsis genome contains eight PINs, encoding proteins with a similar membrane topology. While five of the PINs are typically targeted polarly to the plasma membranes, the smallest members of the family, PIN5 and PIN8, seem to be located not at the plasma membrane but in endomembranes. Here we demonstrate by electron microscopy analysis that PIN8, which is specifically expressed in pollen, resides in the endoplasmic reticulum and that it remains internally localized during pollen tube growth. Transgenic Arabidopsis and tobacco plants were generated overexpressing or ectopically expressing functional PIN8, and its role in control of auxin homeostasis was studied. PIN8 ectopic expression resulted in strong auxin-related phenotypes. The severity of phenotypes depended on PIN8 protein levels, suggesting a rate-limiting activity for PIN8. The observed phenotypes correlated with elevated levels of free IAA and ester-conjugated IAA. Activation of the auxin-regulated synthetic DR5 promoter and of auxin response genes was strongly repressed in seedlings overexpressing PIN8 when exposed to 1-naphthalene acetic acid. Thus, our data show a functional role for endoplasmic reticulum-localized PIN8 and suggest a mechanism whereby PIN8 controls auxin thresholds and access of auxin to the nucleus, thereby regulating auxin-dependent transcriptional activity.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Bettina Schmid; Alexander Hruscha; Sebastian Hogl; Julia Banzhaf-Strathmann; Katrin Strecker; Julie van der Zee; Mathias Teucke; Stefan Eimer; Jan Hegermann; Maike Kittelmann; Elisabeth Kremmer; Marc Cruts; Barbara Solchenberger; Laura Hasenkamp; Frauke van Bebber; Christine Van Broeckhoven; Dieter Edbauer; Stefan F. Lichtenthaler; Christian Haass
Mutations in the Tar DNA binding protein of 43 kDa (TDP-43; TARDBP) are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43+ inclusions (FTLD-TDP). To determine the physiological function of TDP-43, we knocked out zebrafish Tardbp and its paralogue Tardbp (TAR DNA binding protein-like), which lacks the glycine-rich domain where ALS- and FTLD-TDP–associated mutations cluster. tardbp mutants show no phenotype, a result of compensation by a unique splice variant of tardbpl that additionally contains a C-terminal elongation highly homologous to the glycine-rich domain of tardbp. Double-homozygous mutants of tardbp and tardbpl show muscle degeneration, strongly reduced blood circulation, mispatterning of vessels, impaired spinal motor neuron axon outgrowth, and early death. In double mutants the muscle-specific actin binding protein Filamin Ca is up-regulated. Strikingly, Filamin C is similarly increased in the frontal cortex of FTLD-TDP patients, suggesting aberrant expression in smooth muscle cells and TDP-43 loss-of-function as one underlying disease mechanism.
Respiratory Research | 2014
Ilaria Campo; Michele Zorzetto; Francesca Mariani; Zamir Kadija; Patrizia Morbini; Roberto Dore; Eva Kaltenborn; Sabrina Frixel; Ralf Zarbock; Gerhard Liebisch; Jan Hegermann; Christoph Wrede; Matthias Griese; Maurizio Luisetti
BackgroundInterstitial lung disease occurring in children is a condition characterized by high frequency of cases due to genetic aberrations of pulmonary surfactant homeostasis, that are also believed to be responsible of a fraction of familial pulmonary fibrosis. To our knowledge, ABCA3 gene was not previously reported as causative agent of fibrosis affecting both children and adults in the same kindred.MethodsWe investigated a large kindred in which two members, a girl whose interstitial lung disease was first recognized at age of 13, and an adult, showed a diffuse pulmonary fibrosis with marked differences in terms of morphology and imaging. An additional, asymptomatic family member was detected by genetic analysis. Surfactant abnormalities were investigated at biochemical, and genetic level, as well as by cell transfection experiments.ResultsBronchoalveolar lavage fluid analysis of the patients revealed absence of surfactant protein C, whereas the gene sequence was normal. By contrast, sequence of the ABCA3 gene showed a novel homozygous G > A transition at nucleotide 2891, localized within exon 21, resulting in a glycine to aspartic acid change at codon 964. Interestingly, the lung specimens from the girl displayed a morphologic usual interstitial pneumonitis-like pattern, whereas the specimens from one of the two adult patients showed rather a non specific interstitial pneumonitis-like pattern.ConclusionsWe have detected a large kindred with a novel ABCA3 mutation likely causing interstitial lung fibrosis affecting either young and adult family members. We suggest that ABCA3 gene should be considered in genetic testing in the occurrence of familial pulmonary fibrosis.
Journal of Cell Biology | 2013
Maike Kittelmann; Jan Hegermann; Alexandr Goncharov; Hidenori Taru; Mark H. Ellisman; Janet E. Richmond; Yishi Jin; Stefan Eimer
Liprin-α/SYD-2 activity promotes the polymerization of electron-dense projections in the presynaptic active zone through increased recruitment of ELKS-1/ELKS.
Neuron | 2014
Michael Ailion; Mandy Hannemann; Susan Dalton; Andrea Pappas; Shigeki Watanabe; Jan Hegermann; Qiang Liu; Hsiao Fen Han; Mingyu Gu; Morgan Q. Goulding; Nikhil Sasidharan; Kim Schuske; Patrick Hullett; Stefan Eimer; Erik M. Jorgensen
Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1, and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Nikhil Sasidharan; Marija Sumakovic; Mandy Hannemann; Jan Hegermann; Jana F. Liewald; Christian Olendrowitz; Sabine Koenig; Barth D. Grant; Silvio O. Rizzoli; Alexander Gottschalk; Stefan Eimer
Neurons secrete neuropeptides from dense core vesicles (DCVs) to modulate neuronal activity. Little is known about how neurons manage to differentially regulate the release of synaptic vesicles (SVs) and DCVs. To analyze this, we screened all Caenorhabditis elegans Rab GTPases and Tre2/Bub2/Cdc16 (TBC) domain containing GTPase-activating proteins (GAPs) for defects in DCV release from C. elegans motoneurons. rab-5 and rab-10 mutants show severe defects in DCV secretion, whereas SV exocytosis is unaffected. We identified TBC-2 and TBC-4 as putative GAPs for RAB-5 and RAB-10, respectively. Multiple Rabs and RabGAPs are typically organized in cascades that confer directionality to membrane-trafficking processes. We show here that the formation of release-competent DCVs requires a reciprocal exclusion cascade coupling RAB-5 and RAB-10, in which each of the two Rabs recruits the other’s GAP molecule. This contributes to a separation of RAB-5 and RAB-10 domains at the Golgi–endosomal interface, which is lost when either of the two GAPs is inactivated. Taken together, our data suggest that RAB-5 and RAB-10 cooperate to locally exclude each other at an essential stage during DCV sorting.