Jan Hendrik Kobarg
University of Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Hendrik Kobarg.
intelligent systems in molecular biology | 2011
Theodore Alexandrov; Jan Hendrik Kobarg
Motivation: Imaging mass spectrometry (IMS) is one of the few measurement technology s of biochemistry which, given a thin sample, is able to reveal its spatial chemical composition in the full molecular range. IMS produces a hyperspectral image, where for each pixel a high-dimensional mass spectrum is measured. Currently, the technology is mature enough and one of the major problems preventing its spreading is the under-development of computational methods for mining huge IMS datasets. This article proposes a novel approach for spatial segmentation of an IMS dataset, which is constructed considering the important issue of pixel-to-pixel variability. Methods: We segment pixels by clustering their mass spectra. Importantly, we incorporate spatial relations between pixels into clustering, so that pixels are clustered together with their neighbors. We propose two methods. One is non-adaptive, where pixel neighborhoods are selected in the same manner for all pixels. The second one respects the structure observable in the data. For a pixel, its neighborhood is defined taking into account similarity of its spectrum to the spectra of adjacent pixels. Both methods have the linear complexity and require linear memory space (in the number of spectra). Results: The proposed segmentation methods are evaluated on two IMS datasets: a rat brain section and a section of a neuroendocrine tumor. They discover anatomical structure, discriminate the tumor region and highlight functionally similar regions. Moreover, our methods provide segmentation maps of similar or better quality if compared to the other state-of-the-art methods, but outperform them in runtime and/or required memory. Contact: [email protected]
Analytical Chemistry | 2012
Dennis Trede; Stefan Schiffler; Michael Becker; Stefan Wirtz; Klaus Steinhorst; Jan Strehlow; Michaela Aichler; Jan Hendrik Kobarg; Janina Oetjen; Andrey Dyatlov; Stefan Heldmann; Axel Walch; Herbert Thiele; Peter Maass; Theodore Alexandrov
Three-dimensional (3D) imaging has a significant impact on many challenges of life sciences. Three-dimensional matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) is an emerging label-free bioanalytical technique capturing the spatial distribution of hundreds of molecular compounds in 3D by providing a MALDI mass spectrum for each spatial point of a 3D sample. Currently, 3D MALDI-IMS cannot tap its full potential due to the lack efficient computational methods for constructing, processing, and visualizing large and complex 3D MALDI-IMS data. We present a new pipeline of efficient computational methods, which enables analysis and interpretation of a 3D MALDI-IMS data set. Construction of a MALDI-IMS data set was done according to the state-of-the-art protocols and involved sample preparation, spectra acquisition, spectra preprocessing, and registration of serial sections. For analysis and interpretation of 3D MALDI-IMS data, we applied the spatial segmentation approach which is well-accepted in analysis of two-dimensional (2D) MALDI-IMS data. In line with 2D data analysis, we used edge-preserving 3D image denoising prior to segmentation to reduce strong and chaotic spectrum-to-spectrum variation. For segmentation, we used an efficient clustering method, called bisecting k-means, which is optimized for hierarchical clustering of a large 3D MALDI-IMS data set. Using the proposed pipeline, we analyzed a central part of a mouse kidney using 33 serial sections of 3.5 μm thickness after the PAXgene tissue fixation and paraffin embedding. For each serial section, a 2D MALDI-IMS data set was acquired following the standard protocols with the high spatial resolution of 50 μm. Altogether, 512 495 mass spectra were acquired that corresponds to approximately 50 gigabytes of data. After registration of serial sections into a 3D data set, our computational pipeline allowed us to reveal the 3D kidney anatomical structure based on mass spectrometry data only. Finally, automated analysis discovered molecular masses colocalized with major anatomical regions. In the same way, the proposed pipeline can be used for analysis and interpretation of any 3D MALDI-IMS data set in particular of pathological cases.
Biochimica et Biophysica Acta | 2014
Herbert Thiele; Stefan Heldmann; Dennis Trede; Jan Strehlow; Stefan Wirtz; Wolfgang Dreher; J. Berger; Janina Oetjen; Jan Hendrik Kobarg; Bernd M. Fischer; Peter Maass
3D imaging has a significant impact on many challenges in life sciences, because biology is a 3-dimensional phenomenon. Current 3D imaging-technologies (various types MRI, PET, SPECT) are labeled, i.e. they trace the localization of a specific compound in the body. In contrast, 3D MALDI mass spectrometry-imaging (MALDI-MSI) is a label-free method imaging the spatial distribution of molecular compounds. It complements 3D imaging labeled methods, immunohistochemistry, and genetics-based methods. However, 3D MALDI-MSI cannot tap its full potential due to the lack of statistical methods for analysis and interpretation of large and complex 3D datasets. To overcome this, we established a complete and robust 3D MALDI-MSI pipeline combined with efficient computational data analysis methods for 3D edge preserving image denoising, 3D spatial segmentation as well as finding colocalized m/z values, which will be reviewed here in detail. Furthermore, we explain, why the integration and correlation of the MALDI imaging data with other imaging modalities allows to enhance the interpretation of the molecular data and provides visualization of molecular patterns that may otherwise not be apparent. Therefore, a 3D data acquisition workflow is described generating a set of 3 different dimensional images representing the same anatomies. First, an in-vitro MRI measurement is performed which results in a three-dimensional image modality representing the 3D structure of the measured object. After sectioning the 3D object into N consecutive slices, all N slices are scanned using an optical digital scanner, enabling for performing the MS measurements. Scanning the individual sections results into low-resolution images, which define the base coordinate system for the whole pipeline. The scanned images conclude the information from the spatial (MRI) and the mass spectrometric (MALDI-MSI) dimension and are used for the spatial three-dimensional reconstruction of the object performed by image registration techniques. Different strategies for automatic serial image registration applied to MS datasets are outlined in detail. The third image modality is histology driven, i.e. a digital scan of the histological stained slices in high-resolution. After fusion of reconstructed scan images and MRI the slice-related coordinates of the mass spectra can be propagated into 3D-space. After image registration of scan images and histological stained images, the anatomical information from histology is fused with the mass spectra from MALDI-MSI. As a result of the described pipeline we have a set of 3 dimensional images representing the same anatomies, i.e. the reconstructed slice scans, the spectral images as well as corresponding clustering results, and the acquired MRI. Great emphasis is put on the fact that the co-registered MRI providing anatomical details improves the interpretation of 3D MALDI images. The ability to relate mass spectrometry derived molecular information with in vivo and in vitro imaging has potentially important implications. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan.
Journal of Proteomics | 2013
Janina Oetjen; Michaela Aichler; Dennis Trede; Jan Strehlow; J. Berger; Stefan Heldmann; Michael Becker; Michael Gottschalk; Jan Hendrik Kobarg; Stefan Wirtz; Stefan Schiffler; Herbert Thiele; Axel Walch; Peter Maass; Theodore Alexandrov
UNLABELLED MALDI imaging mass spectrometry (MALDI-imaging) has emerged as a spatially-resolved label-free bioanalytical technique for direct analysis of biological samples and was recently introduced for analysis of 3D tissue specimens. We present a new experimental and computational pipeline for molecular analysis of tissue specimens which integrates 3D MALDI-imaging, magnetic resonance imaging (MRI), and histological staining and microscopy, and evaluate the pipeline by applying it to analysis of a mouse kidney. To ensure sample integrity and reproducible sectioning, we utilized the PAXgene fixation and paraffin embedding and proved its compatibility with MRI. Altogether, 122 serial sections of the kidney were analyzed using MALDI-imaging, resulting in a 3D dataset of 200GB comprised of 2million spectra. We show that elastic image registration better compensates for local distortions of tissue sections. The computational analysis of 3D MALDI-imaging data was performed using our spatial segmentation pipeline which determines regions of distinct molecular composition and finds m/z-values co-localized with these regions. For facilitated interpretation of 3D distribution of ions, we evaluated isosurfaces providing simplified visualization. We present the data in a multimodal fashion combining 3D MALDI-imaging with the MRI volume rendering and with light microscopic images of histologically stained sections. BIOLOGICAL SIGNIFICANCE Our novel experimental and computational pipeline for 3D MALDI-imaging can be applied to address clinical questions such as proteomic analysis of the tumor morphologic heterogeneity. Examining the protein distribution as well as the drug distribution throughout an entire tumor using our pipeline will facilitate understanding of the molecular mechanisms of carcinogenesis.
GigaScience | 2015
Janina Oetjen; Kirill Veselkov; Jeramie D. Watrous; James S. McKenzie; Michael Becker; Lena Hauberg-Lotte; Jan Hendrik Kobarg; Nicole Strittmatter; Anna Mroz; Franziska Hoffmann; Dennis Trede; Andrew Palmer; Stefan Schiffler; Klaus Steinhorst; Michaela Aichler; Robert Goldin; Orlando Guntinas-Lichius; Ferdinand von Eggeling; Herbert Thiele; Kathrin Maedler; Axel Walch; Peter Maass; Pieter C. Dorrestein; Zoltan Takats; Theodore Alexandrov
BackgroundThree-dimensional (3D) imaging mass spectrometry (MS) is an analytical chemistry technique for the 3D molecular analysis of a tissue specimen, entire organ, or microbial colonies on an agar plate. 3D-imaging MS has unique advantages over existing 3D imaging techniques, offers novel perspectives for understanding the spatial organization of biological processes, and has growing potential to be introduced into routine use in both biology and medicine. Owing to the sheer quantity of data generated, the visualization, analysis, and interpretation of 3D imaging MS data remain a significant challenge. Bioinformatics research in this field is hampered by the lack of publicly available benchmark datasets needed to evaluate and compare algorithms.FindingsHigh-quality 3D imaging MS datasets from different biological systems at several labs were acquired, supplied with overview images and scripts demonstrating how to read them, and deposited into MetaboLights, an open repository for metabolomics data. 3D imaging MS data were collected from five samples using two types of 3D imaging MS. 3D matrix-assisted laser desorption/ionization imaging (MALDI) MS data were collected from murine pancreas, murine kidney, human oral squamous cell carcinoma, and interacting microbial colonies cultured in Petri dishes. 3D desorption electrospray ionization (DESI) imaging MS data were collected from a human colorectal adenocarcinoma.ConclusionsWith the aim to stimulate computational research in the field of computational 3D imaging MS, selected high-quality 3D imaging MS datasets are provided that could be used by algorithm developers as benchmark datasets.
Journal of Integrative Bioinformatics | 2012
Dennis Trede; Jan Hendrik Kobarg; Janina Oetjen; Herbert Thiele; Peter Maass; Theodore Alexandrov
In the last decade, matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS), also called as MALDI-imaging, has proven its potential in proteomics and was successfully applied to various types of biomedical problems, in particular to histopathological label-free analysis of tissue sections. In histopathology, MALDI-imaging is used as a general analytic tool revealing the functional proteomic structure of tissue sections, and as a discovery tool for detecting new biomarkers discriminating a region annotated by an experienced histologist, in particular, for cancer studies. A typical MALDI-imaging data set contains 10⁸ to 10⁹ intensity values occupying more than 1 GB. Analysis and interpretation of such huge amount of data is a mathematically, statistically and computationally challenging problem. In this paper we overview some computational methods for analysis of MALDI-imaging data sets. We discuss the importance of data preprocessing, which typically includes normalization, baseline removal and peak picking, and hightlight the importance of image denoising when visualizing IMS data.
Molecular & Cellular Proteomics | 2016
Mark Kriegsmann; Rita Casadonte; Joerg Kriegsmann; Hendrik Dienemann; Peter Schirmacher; Jan Hendrik Kobarg; Kristina Schwamborn; Albrecht Stenzinger; Arne Warth; Wilko Weichert
Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing.
Molecular & Cellular Proteomics | 2016
Stephanie Devaux; Dasa Cizkova; Jusal Quanico; Julien Franck; Serge Nataf; Laurent Pays; Lena Hauberg-Lotte; Peter Maass; Jan Hendrik Kobarg; Firas Kobeissy; Céline Mériaux; Maxence Wisztorski; Lucia Slovinska; Juraj Blasko; Viera Cigankova; Isabelle Fournier; Michel Salzet
Spinal cord injury (SCI) represents a major debilitating health issue with a direct socioeconomic burden on the public and private sectors worldwide. Although several studies have been conducted to identify the molecular progression of injury sequel due from the lesion site, still the exact underlying mechanisms and pathways of injury development have not been fully elucidated. In this work, based on OMICs, 3D matrix-assisted laser desorption ionization (MALDI) imaging, cytokines arrays, confocal imaging we established for the first time that molecular and cellular processes occurring after SCI are altered between the lesion proximity, i.e. rostral and caudal segments nearby the lesion (R1-C1) whereas segments distant from R1-C1, i.e. R2-C2 and R3-C3 levels coexpressed factors implicated in neurogenesis. Delay in T regulators recruitment between R1 and C1 favor discrepancies between the two segments. This is also reinforced by presence of neurites outgrowth inhibitors in C1, absent in R1. Moreover, the presence of immunoglobulins (IgGs) in neurons at the lesion site at 3 days, validated by mass spectrometry, may present additional factor that contributes to limited regeneration. Treatment in vivo with anti-CD20 one hour after SCI did not improve locomotor function and decrease IgG expression. These results open the door of a novel view of the SCI treatment by considering the C1 as the therapeutic target.
Advances in Computational Mathematics | 2014
Jan Hendrik Kobarg; Peter Maass; Janina Oetjen; Oren Tropp; Eyal Hirsch; Chen Sagiv; Mohammad Golbabaee; Pierre Vandergheynst
This article does not present new mathematical results, it solely aims at discussing some numerical experiments with MALDI Imaging data. However, these experiments are based on and could not be done without the mathematical results obtained in the UNLocX project. They tackle two obstacles which presently prevent clinical routine applications of MALDI Imaging technology. In the last decade, matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) has developed into a powerful bioanalytical imaging modality. MALDI imaging data consists of a set of mass spectra, which are measured at different locations of a flat tissue sample. Hence, this technology is capable of revealing the full metabolic structure of the sample under investigation. Sampling resolution as well as spectral resolution is constantly increasing, presently a conventional 2D MALDI Imaging data requires up to 100 GB per dataset. A major challenge towards routine applications of MALDI Imaging in pharmaceutical or medical workflows is the high computational cost for evaluating and visualizing the information content of MALDI imaging data. This becomes even more critical in the near future when considering cohorts or 3D applications. Due to its size and complexity MALDI Imaging constitutes a challenging test case for high performance signal processing. In this article we will apply concepts and algorithms, which were developed within the UNLocX project, to MALDI Imaging data. In particular we will discuss a suitable phase space model for such data and report on implementations of the resulting transform coders using GPU technology. Within the MALDI Imaging workflow this leads to an efficient baseline removal and peak picking. The final goal of data processing in MALDI Imaging is the discrimination of regions having different metabolic structures. We introduce and discuss so-called soft-segmentation maps which are obtained by non-negative matrix factorization incorporating sparsity constraints.
Scientific Reports | 2018
Oliver Klein; Kristin Strohschein; Grit Nebrich; Michael Fuchs; Herbert Thiele; Patrick Giavalisco; Georg N. Duda; Tobias Winkler; Jan Hendrik Kobarg; Dennis Trede; Sven Geissler
Pre-clinical and clinical studies are now beginning to demonstrate the high potential of cell therapies in enhancing muscle regeneration. We previously demonstrated functional benefit after the transplantation of autologous bone marrow mesenchymal stromal cells (MSC-TX) into a severe muscle crush trauma model. Despite our increasing understanding of the molecular and cellular mechanisms underlying MSC’s regenerative function, little is known about the local molecular alterations and their spatial distribution within the tissue after MSC-TX. Here, we used MALDI imaging mass spectrometry (MALDI-IMS) in combination with multivariate statistical strategies to uncover previously unknown peptide alterations within severely injured skeletal muscles. Our analysis revealed that very early molecular alterations in response to MSC-TX occur largely in the region adjacent to the trauma and only to a small extent in the actual trauma region. Using “bottom up” mass spectrometry, we subsequently identified the proteins corresponding to the differentially expressed peptide intensity distributions in the specific muscle regions and used immunohistochemistry to validate our results. These findings extend our current understanding about the early molecular processes of muscle healing and highlights the critical role of trauma adjacent tissue during the early therapeutic response upon treatment with MSC.