Jan Hrabeta
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Hrabeta.
Current Protein & Peptide Science | 2009
Tomas Eckschlager; Vojtech Adam; Jan Hrabeta; Katarina Figova; Rene Kizek
Metallothioneins (MTs) are low molecular, cysteine-rich proteins that have naturally-occurring Zn(2+) in both clusters. They may serve as a reservoir of metals for synthesis of apoenzymes and zinc-finger transcription regulators. MTs are also involved with several important proteins e.g. p53, NF-kappaB, PKCl, and GTPase Rab3A. New biological roles for these proteins have been identified including those needed in the carcinogenic process. However, their use as a predictive marker remains controversial. Several reports have disclosed MTs expression as a prognostic factor for tumor progression and drug resistance in a variety of malignancies particularly breast, prostatic, ovarial, head and neck, non-small cell lung cancer, melanoma, and soft tissue sarcoma. The role of MTs as a tumor disease marker or as a cause of resistance in cancer treatment is reviewed and discussed. Moreover, we describe some analytical methods that were developed to detect MTs.
Pharmacology & Therapeutics | 2012
Rene Kizek; Vojtech Adam; Jan Hrabeta; Tomas Eckschlager; Svatopluk Smutny; Jaroslav V. Burda; Eva Frei; Marie Stiborová
Over the past forty years, anthracyclines and ellipticines have attracted attention as promising cytostatics. In this review, we focus on their mechanisms of cytoxicity, DNA-damaging effects and adverse side-effects. We also summarize ways to enhance the therapeutic effects of these drugs together with a decrease in their adverse effects. Current drug design strategies are focused on drug bioavailability and their tissue targeting, whereas drug delivery to specific intracellular compartments is rarely addressed. Therefore, therapies utilizing the antineoplastic activities of anthracyclines and ellipticines combined with novel strategies such as nanotechnologies for safer drug delivery, as well as strategies based on gene therapy, could significantly contribute to medical practice.
International Journal of Molecular Sciences | 2017
Tomas Eckschlager; Johana Plch; Marie Stiborova; Jan Hrabeta
Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.
Drug Metabolism Reviews | 2012
Sona Krizkova; Marketa Ryvolova; Jan Hrabeta; Vojtech Adam; Marie Stiborová; Tomas Eckschlager; Rene Kizek
Metallothioneins (MTs) are involved in protection against oxidative stress (OS) and toxic metals and they participate in zinc metabolism and its homeostasis. Disturbing of zinc homeostasis can lead to formation of reactive oxygen species, which can result in OS causing alterations in immunity, aging, and civilization diseases, but also in cancer development. It is not surprising that altered zinc metabolism and expression of MTs are of great interest in the case of studying of oncogenesis and cancer prognosis. The role of MTs and zinc in cancer development is tightly connected, and the structure and function of MTs are strongly dependent on Zn2+ redox state and its binding to proteins. Antiapoptic effects of MTs and their interactions with proteins nuclear factor kappa B, protein kinase C, esophageal cancer-related gene, and p53 as well as the role of MTs in their proliferation, immunomodulation, enzyme activation, and interaction with nitric oxide are reviewed. Utilization of MTs in cancer diagnosis and therapy is summarized and their importance for chemoresistance is also mentioned.
Current Medicinal Chemistry | 2012
Marie Stiborová; Tomas Eckschlager; Jitka Poljaková; Jan Hrabeta; Vojtech Adam; Rene Kizek; Eva Frei
Histone deacetylase (HDAC) inhibitors are a group of anticancer drugs which cause growth arrest and apoptosis of several tumor cells. HDAC inhibitors have been also found to increase the anticancer efficacy of several treatment modalities i.e. chemotherapy or radiotherapy. Here, we review the literature on combinations of HDAC inhibitors both with ionizing radiation and with other drugs, highlighting DNA-damaging compounds. The results of numerous studies with several types of cancer cells discussed in this review demonstrate that HDAC inhibitors enhance the effect of DNA damaging agents, such as inhibitors of topoisomerases, inhibitors of DNA synthesis, DNA-intercalators and agents covalently modifying DNA (i.e. doxorubicin, etoposid, 5-fluorouracil, cisplatin, melphalan, temozolomide and ellipticine) or of irradiation. Hence, the use of HDAC inhibitors combined with these antitumor drugs or ionizing radiation is a promising tool which may make treatment of patients suffering from many types of cancer more efficient. Several molecular mechanisms are responsible for the observed higher sensitivity of tumor cells towards therapeutic agents elicited by HDAC inhibitors. These mechanisms are discussed also in this review.
Current Medicinal Chemistry | 2011
Jaromír Gumulec; Michal Masarik; S. Krizkova; Vojtech Adam; Jan Hrabeta; Tomas Eckschlager; Marie Stiborová; Rene Kizek
Zinc(II) ions contribute to a number of biological processes e.g. DNA synthesis, gene expression, enzymatic catalysis, neurotransmission, and apoptosis. Zinc(II) dysregulation, deficiency and over-supply are connected with various diseases, particularly cancer. 98 % of human body zinc(II) is localized in the intracellular compartment, where zinc(II) is bound with low affinity to metallothionein (MT). Zinc transporters ZIP and ZnT maintain transmembrane transport from/to cells or organelles. Imbalance of their regulation is described in cancers, particularly prostate (down-regulated zinc transporters ZIP1, 2, 3 and ZnT-2) and breast, notably its high-risk variant (up-regulated ZIP6, 7, 10). As a result, intracellular and even blood plasma zinc(II) levels are altered. MT protects cells against oxidative stress, because it cooperates with reduced glutathione (GSH). Recent studies indicate elevated serum level of MT in a number of malignancies, among others in breast, and prostate. MT together with zinc(II) affect apoptosis and proliferation, thus together with its antioxidative effects it may affect cancer. To date, only little is known about the influence of zinc(II) and MT on cancer, while these compounds may play an important role in pathogenesis. This review concludes current data regarding the impact of zinc(II) on the pathogenesis of breast and prostate cancers with potential outlines of new, targeted therapy and prevention. Moreover, blood plasma zinc(II) and MT levels and dietary zinc(II) intake are discussed in relation to breast and prostate cancer risk.
Biomedical papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia | 2013
Jan Hrabeta; Marie Stiborová; Vojtech Adam; Rene Kizek; Tomas Eckschlager
BACKGROUND Despite recent success toward discovery of more effective anticancer drugs, chemoresistance remains a major cause of treatment failure. There is emerging evidence that epigenetics plays a key role in the development of the resistance. Epigenetic regulators such as histone acetyltransferases (HATs) and histone deacetylases (HDACs) play an important role in gene expression. The latter are found to be commonly linked with many types of cancers and influence cancer development. Overall, histone acetylation is being investigated as a therapeutic target because of its importance in regulating gene expression. This review summarizes mechanisms of the anticancer effects of histone deacetylase (HDAC) inhibitors and the results of clinical studies. RESULTS Different HDAC inhibitors induce cancer cell death by different mechanisms that include changes in gene expression and alteration of both histone and non-histone proteins. Enhanced histone acetylation in tumors results in modification of expression of genes involved in cell signaling. Inhibition of HDACs causes changed expression in 2-10 % of genes involved in important biological processes. The results of experiments and clinical studies demonstrate that combination of HDAC inhibitors with some anticancer drugs have synergistic or additive effects. CONCLUSIONS Even though many biological effects of HDAC inhibitors have been found, most of the mechanisms of their action remain unclear. In addition, their use in combination with other drugs and the combination regime need to be investigated. The discovery of predictive factors is also necessary. Finally, a key question is whether the pan-HDAC inhibitors or the selective inhibitors will be more efficient for different types of cancers.
ACS Applied Materials & Interfaces | 2016
Simona Dostalova; Tereza Cerna; David Hynek; Zuzana Koudelkova; Tomáš Vaculovič; Pavel Kopel; Jan Hrabeta; Zbynek Heger; Marketa Vaculovicova; Tomas Eckschlager; Marie Stiborová; Vojtech Adam
Herein, we describe a novel approach for targeting of ubiquitous protein apoferritin (APO)-encapsulating doxorubicin (DOX) to prostate cancer using antibodies against prostate-specific membrane antigen (PSMA). The conjugation of anti-PSMA antibodies and APO was carried out using HWRGWVC heptapeptide, providing their site-directed orientation. The prostate-cancer-targeted and nontargeted nanocarriers were tested using LNCaP and HUVEC cell lines. A total of 90% of LNCaP cells died after treatment with DOX (0.25 μM) or DOX in nontargeted and prostate-cancer-targeted APO, proving that the encapsulated DOX toxicity for LNCaP cells remained the same. Free DOX showed higher toxicity for nonmalignant cells, whereas the toxicity was lower after treatment with the same dosage of APO-encapsulated DOX (APODOX) and even more in prostate-cancer-targeted APODOX. Hemolytic assay revealed exceptional hemocompatibility of the entire nanocarrier. The APO encapsulation mechanism ensures applicability using a wide variety of chemotherapeutic drugs, and the presented surface modification enables targeting to various tumors.
International Journal of Oncology | 2015
Tomáš Groh; Jan Hrabeta; Mohammed Ashraf Khalil; Helena Doktorova; Tomas Eckschlager; Marie Stiborová
High-risk neuroblastoma remains one of the most important therapeutic challenges for pediatric oncologists. New agents or regimens are urgently needed to improve the treatment outcome of this fatal tumor. We examined the effect of histone deacetylase (HDAC) inhibitors in a combination with other chemotherapeutics on a high-risk neuroblastoma UKF-NB-4 cell line. Treatment of UKF-NB-4 cells with DNA-damaging chemotherapeutics cisplatin or etoposide combined with the HDAC inhibitor valproate (VPA) resulted in the synergistic antitumor effect. This was associated with caspase-3-dependent induction of apoptosis. Another HDAC inhibitor trichostatin A and a derivative of VPA that does not exhibit HDAC inhibitory activity, valpromide, lacked this effect. The synergism was only induced when VPA was combined with cytostatics targeted to cellular DNA; VPA does not potentiate the cytotoxicity of the anticancer drug vincristine that acts by a mechanism different from that of DNA damage. The VPA-mediated sensitization of UKF-NB-4 cells to cisplatin or etoposide was dependent on the sequence of drug administration; the potentiating effect was only produced either by simultaneous treatment with these drugs or when the cells were pretreated with cisplatin or etoposide before their exposure to VPA. The synergistic effects of VPA with cisplatin or etoposide were associated with changes in the acetylation status of histones H3 and H4. The results of this study provide a rationale for clinical evaluation of the combination of VPA and cisplatin or etoposide for treating children suffering from high-risk neuroblastoma.
Electrophoresis | 2013
Lenka Vyslouzilova; Sona Krizkova; Jiri Anyz; David Hynek; Jan Hrabeta; Jarmila Kruseova; Tomas Eckschlager; Vojtech Adam; Olga Stepankova; Rene Kizek
In this study, we determined serum levels of metallothioneins (MTs) and zinc in children with solid tumours (neuroblastoma, Hodgkin lymphoma, medulloblastoma, osteosarcoma, Ewing sarcoma and nephroblastoma) by differential pulse voltammetry Brdicka reaction and ELISA. Zn(II) level in patients sera was 40% compared to controls, contrariwise, MT level was 4.2 × higher in patients. No significant differences among single diagnoses were found both for Zn(II) and MT. When determined Zn(II)/MT ratio, in controls its value was 24.6, but it was 2.6 in patients. After Western‐blotting with anti‐MT and anti‐Zn chicken antibodies, variable intensities of the bands within the samples were observed. The brightness curve obtained for each sample both for MT‐ and Zn blots was further analysed to produce a list of band positions together with some complementary information related to the intensity of the observed bands by the optimised algorithm. We constructed from those profiles decision trees that enable to distinguish different groups of tumours. The blood samples were heat‐treated, in which we supposed mainly MT, but samples contained other thermostable Zn‐containing proteins that were helpful for identification of embryonal tumours with 88% accuracy and for identification of sarcomas with 78% accuracy. In MT blots the accuracies were 53 and 45%, respectively. Simultaneous analysis of MT and Zn blots did not increased accuracy of identification neither in embryonal tumours (80%) nor in sarcomas. Those results are promising not only from diagnostic point of view but particularly in the area of studying of individual MT isoforms and their aggregates in malignant tumours.