Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Isberg is active.

Publication


Featured researches published by Jan Isberg.


IEEE Transactions on Energy Conversion | 2005

Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator

Mats Leijon; Hans Bernhoff; Olov Ågren; Jan Isberg; Jan Sundberg; Marcus Berg; Karl Erik Karlsson; Arne Wolfbrandt

The possibility to use three-phase permanent magnet linear generators to convert sea wave energy into electric energy is investigated by multiphysics simulations. The results show a possibility, which needs to be further verified by experimental tests, for a future step toward a sustainable electric power production from ocean waves by using direct conversion. The results suggest that wave energy can have an impact on tomorrows new sustainable electricity production, not only for large units, but also for units ranging down to 10 kW. This gives wave power a larger economical potential than previously estimated. The study demonstrates the feasibility of computer simulations to give a broad, and in several aspects a detailed, understanding of the energy conversion. The simulation results also give a useful starting point for future experimental work.


Journal of Applied Physics | 2007

Wave power absorption: Experiments in open sea and simulation

Mikael Eriksson; Rafael Waters; Olle Svensson; Jan Isberg; Mats Leijon

A full scale prototype of a wave power plant based on a direct drive linear generator driven by a point absorber has been installed at the west coast of Sweden. In this paper, experimentally collected data of energy absorption for different electrical loads are used to verify a model of the wave power plant including the interactions of wave, buoy, generator, and external load circuit. The wave-buoy interaction is modeled with linear potential wave theory. The generator is modeled as a nonlinear mechanical damping function that is dependent on piston velocity and electric load. The results show good agreement between experiments and simulations. Potential wave theory is well suited for the modeling of a point absorber in normal operation and for the design of future converters. Moreover, the simulations are fast, which opens up for simulations of wave farms.


IEEE Power & Energy Magazine | 2009

Catch the wave to electricity

Mats Leijon; Rafael Waters; Magnus Rahm; Olle Svensson; Cecilia Boström; Erland Strömstedt; Jens Engström; Simon Tyrberg; Andrej Savin; Halvar Gravråkmo; Hans Bernhoff; Jan Sundberg; Jan Isberg; Olov Ågren; Oskar Danielsson; Mikael Eriksson; Erik Lejerskog; Björn Bolund; Stefan Gustafsson; Karin Thorburn

The ocean are largely an untapped source of energy. However, compared to other energies, power fluctuations for ocean waves are small over longer periods of time. This paper present a grid-oriented approach to electricity production from ocean waves, utilizing a minimal amount of mechanical components.


Nature Materials | 2013

Generation, transport and detection of valley-polarized electrons in diamond

Jan Isberg; Markus Gabrysch; Johan Hammersberg; Saman Majdi; Kiran Kumar Kovi; Daniel Twitchen

Standard electronic devices encode bits of information by controlling the amount of electric charge in the circuits. Alternatively, it is possible to make devices that rely on other properties of electrons than their charge. For example, spintronic devices make use of the electron spin angular momentum as a carrier of information. A new concept is valleytronics in which information is encoded by the valley quantum number of the electron. The analogy between the valley and spin degrees of freedom also implies the possibility of valley-based quantum computing. In this Article, we demonstrate for the first time generation, transport (across macroscopic distances) and detection of valley-polarized electrons in bulk diamond with a relaxation time of 300 ns at 77 K. We anticipate that these results will form the basis for the development of integrated valleytronic devices.


IEEE Journal of Oceanic Engineering | 2006

Theory and Experiment on an Elastically Moored Cylindrical Buoy

Mikael Eriksson; Jan Isberg; Mats Leijon

In this paper, we compare simulated forces and accelerations for a moored floating buoy with full-scale experimental results in real ocean waves. The buoy is moored with a wire connected by springs to a concrete foundation situated at the seafloor. This study aims to develop a computer model using potential theory with a linearized free-surface boundary condition to describe the motion of such a system. The intention is to use the model for future study of wave-energy absorption and design of converters. Another objective is to see how complex a model is required to get accurate results. The method used is computationally fast and makes it possible to couple linear buoy wave interaction with nonlinear generator models, so that different loads and latching can be studied. A computationally fast method is required to model farms of wave-energy converters


Journal of Applied Physics | 2009

Wave energy converter with enhanced amplitude response at frequencies coinciding with Swedish west coast sea states by use of a supplementary submerged body

Jens Engström; Mikael Eriksson; Jan Isberg; Mats Leijon

The full-scale direct-driven wave energy converter developed at Uppsala University has been in offshore operation at the Swedish west coast since 2006. Earlier simulations have now been validated by full-scale experiment with good agreement. Based on that, a theoretical model for a passive system having optimum amplitude response at frequencies coinciding with Swedish west coast conditions has been developed. The amplitude response is increased by adding supplementary inertia by use of the additional mass from a submerged body. A sphere with neutral buoyancy is chosen as the submerged body and modeled as being below the motion of the waves. The model is based on potential linear wave theory and the power capture ratio is studied for real ocean wave data collected at the research test site. It is found that the power capture ratio for the two body system can be increased from 30% to 60% compared to a single body system. Increased velocity in the system also decreases the value for optimal load damping from...


Journal of Applied Physics | 2013

Performance of large arrays of point absorbing direct-driven wave energy converters

Jens Engström; Mikael Eriksson; Malin Göteman; Jan Isberg; Mats Leijon

Future commercial installation of wave energy plants using point absorber technology will require clusters of tens up to several hundred devices, in order to reach a viable electricity production. Interconnected devices also serve the purpose of power smoothing, which is especially important for devices using direct-driven power take off. The scope of this paper is to evaluate a method to optimize wave energy farms in terms of power production, economic viability, and resources. In particular, the paper deals with the power variation in a large array of point-absorbing direct-driven wave energy converters, and the smoothing effect due to the number of devices and their hydrodynamic interactions. A few array geometries are compared and 34 sea states measured at the Lysekil research site at the Swedish west coast are used in the simulations. Potential linear flow theory is used with full hydrodynamic interactions between the buoys. It is shown that the variance in power production depends crucially on the geometry of the array and the number of interacting devices, but not significantly on the energy period of the waves.


Journal of Applied Physics | 2011

A resonant two body system for a point absorbing wave energy converter with direct-driven linear generator

Jens Engström; Venugopalan Kurupath; Jan Isberg; Mats Leijon

Based on an earlier conceptual model of a two body system point absorbing wave energy converter tuned to resonance in Swedish west coast sea states, an extended coupled hydrodynamic, mechanic, and electromagnetic model has been developed. The hydrodynamic characteristics of the two body system are studied in the frequency and time domain, while its response to real Swedish west coast sea states are studied in the time domain, by using a wave energy converter model with two independently moving bodies connected to a direct driven linear generator with non-linear damping. The two body system wave energy converter gives nearly 80% power capture ratio in irregular waves. The resonant behaviour is shown to be sensitive to the shape of the spectrum, and the distance between the two bodies is shown to have a large effect on the power absorption.


IEEE Transactions on Electron Devices | 2008

Numerical Parameterization of Chemical-Vapor-Deposited (CVD) Single-Crystal Diamond for Device Simulation and Analysis

S.J. Rashid; A. Tajani; Daniel Twitchen; L. Coulbeck; Florin Udrea; T. Butler; Nalin L. Rupesinghe; Mihai Brezeanu; Jan Isberg; A. Garraway; M. Dixon; R.S. Balmer; Dinesh Chamund; P. Taylor; G.A.J. Amaratunga

High-quality electronic-grade intrinsic chemical- vapor-deposited (CVD) single-crystal diamond layers having exceptionally high carrier mobilities have been reported by Isberg et al. This makes the realization of novel electronic devices in diamond, particularly for high-voltage and high-temperature applications, a viable proposition. As such, material models which can capture the particular features of diamond as a semiconductor are required to analyze, optimize, and quantitatively design new devices. For example, the incomplete ionization of boron in diamond and the transition to metallic conduction in heavily boron-doped layers require accurate carrier freeze-out models to be included in the simulation of diamond devices. Models describing these phenomena are proposed in this paper and include numerical approximation of intrinsic diamond which is necessary to formulate doping- and temperature-dependent mobility models. They enable a concise numerical description of single-crystal diamond which agrees with data obtained from material characterization. The models are verified by application to new Schottky m-i-p+ diode structures in diamond. Simulated forward characteristics show excellent correlation with experimental measurements. In spite of the lack of impact ionization data for single-crystal diamond, approximation of avalanche coefficient parameters from other wide-bandgap semiconductors has also enabled the reverse blocking characteristics of diamond diodes to be simulated. Acceptable agreement with breakdown voltage from experimental devices made with presently available single-crystal CVD diamond is obtained.


Diamond and Related Materials | 2001

Injection dependent long carrier lifetimes in high quality CVD diamond

Johan Hammersberg; Jan Isberg; E. Johansson; T. Lundström; O. Hjortstam; Hans Bernhoff

Abstract In this paper we report an experimental study of photocurrent mobility×lifetime products and free carrier lifetimes in CVD grown polycrystalline diamond of various qualities. The investigated samples are low impurity samples, nitrogen content ∼10 15 cm −3 , with an average grain size ranging from 25 μm up to 110 μm. This large difference in average grain size makes it possible to distinguish effects due to lifetime limiting trapping and recombination defect centers inside the grains from effects caused by defect centers at grain boundaries. At low carrier densities, 13 cm −3 , the effective free carrier lifetime is in the sub-nanosecond to nanosecond range in all samples due to intra-grain trapping and recombination centers. At high carrier densities, >10 13 cm −3 , the intra-grain centers becomes saturated and the effective lifetime becomes predominately given by carrier diffusion to and recombination at the defects related to the grain boundaries. Hence, the effective lifetime at high carrier densities is strongly related to the average grain size and increases up to several tens of nanoseconds, in samples with a large average grain size, whereas it remains in the nanosecond range for samples with small average grain size. In addition, we observe a lower mobility×lifetime product and decay constant with increasing nitrogen content, clearly showing the negative influence of nitrogen and nitrogen-related defects on these important material parameters.

Collaboration


Dive into the Jan Isberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge