Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan J. Enghild is active.

Publication


Featured researches published by Jan J. Enghild.


Journal of Biological Chemistry | 2004

Purification and Characterization of Mouse Soluble Receptor for Advanced Glycation End Products (sRAGE)

Lana E. Hanford; Jan J. Enghild; Zuzana Valnickova; Steen V. Petersen; Lisa M. Schaefer; Todd M. Schaefer; Todd A. Reinhart; Tim D. Oury

The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface proteins that has been implicated as a progression factor in a number of pathologic conditions from chronic inflammation to cancer to Alzheimers disease. In such conditions, RAGE acts to facilitate pathogenic processes. Its secreted isoform, soluble RAGE or sRAGE, has the ability to prevent RAGE signaling by acting as a decoy. sRAGE has been used successfully in animal models of a range of diseases to antagonize RAGE-mediated pathologic processes. In humans, sRAGE results from alternative splicing of RAGE mRNA. This study was aimed to determine whether the same holds true for mouse sRAGE and, in addition, to biochemically characterize mouse sRAGE. The biochemical characteristics examined include glycosylation and disulfide patterns. In addition, sRAGE was found to bind heparin, which may mediate its distribution in the extracellular matrix and cell surfaces of tissues. Finally, our data indicated that sRAGE in the mouse is likely produced by carboxyl-terminal truncation, in contrast to the alternative splicing mechanism reported in humans.


Journal of Biological Chemistry | 2005

Desmosome Signaling INHIBITION OF p38MAPK PREVENTS PEMPHIGUS VULGARIS IgG-INDUCED CYTOSKELETON REORGANIZATION

Paula Berkowitz; Peiqi Hu; Zhi Liu; Luis A. Diaz; Jan J. Enghild; Michael P. Chua; David S. Rubenstein

In the human autoimmune blistering disease pemphigus vulgaris (PV) pathogenic antibodies bind the desmosomal cadherin desmoglein-3 (dsg3), causing epidermal cell-cell detachment (acantholysis). Pathogenic PV dsg3 autoantibodies were used to initiate desmosome signaling in human keratinocyte cell cultures. Heat shock protein 27 (HSP27) and p38MAPK were identified as proteins rapidly phosphorylated in response to PV IgG. Inhibition of p38MAPK activity prevented PV IgG-induced HSP27 phosphorylation, keratin filament retraction, and actin reorganization. These observations suggest that PV IgG binding to dsg3 activates desmosomal signal transduction cascades leading to (i) p38MAPK and HSP27 phosphorylation and (ii) cytoskeletal reorganization, supporting a mechanistic role for signaling in PV IgG-induced acantholysis. Targeting desmosome signaling via inhibition of p38MAPK and HSP27 phosphorylation may provide novel treatments for PV and other desmosome-associated blistering diseases.


Journal of Biological Chemistry | 2007

Proteolytic activities of human ADAMTS-5: comparative studies with ADAMTS-4.

Christi Gendron; Masahide Kashiwagi; Ngee Han Lim; Jan J. Enghild; Ida B. Thøgersen; Clare Elizabeth Hughes; Bruce Caterson; Hideaki Nagase

Aggrecanases have been characterized as proteinases that cleave the Glu373-Ala374 bond of the aggrecan core protein, and they are multidomain metalloproteinases belonging to the ADAMTS (adamalysin with thrombospondin type 1 motifs) family. The first aggrecanases discovered were ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). They contain a zinc catalytic domain followed by non-catalytic ancillary domains, including a disintegrin domain, a thrombospondin domain, a cysteine-rich domain, and a spacer domain. In the case of ADAMTS-5, a second thrombospondin domain follows the spacer domain. We previously reported that the non-catalytic domains of ADAMTS-4 influence both its extracellular matrix interaction and proteolytic abilities. Here we report the effects of these domains of ADAMTS-5 on the extracellular matrix interaction and proteolytic activities and compare them with those of ADAMTS-4. Although the spacer domain was critical for ADAMTS-4 localization in the matrix, the cysteine-rich domain influenced ADAMTS-5 localization. Similar to previous reports of other ADAMTS family members, very little proteolytic activity was detected with the ADAMTS-5 catalytic domain alone. The sequential inclusion of each carboxyl-terminal domain enhanced its activity against aggrecan, carboxymethylated transferrin, fibromodulin, decorin, biglycan, and fibronectin. Both ADAMTS-4 and -5 had a broad optimal activity at pH 7.0–9.5. Aggrecanolytic activities were sensitive to the NaCl concentration, but activities on non-aggrecan substrates, e.g. carboxymethylated transferrin, were not affected. Although ADAMTS-4 and ADAMTS-5 had similar general proteolytic activities, the aggrecanase activity of ADAMTS-5 was at least 1,000-fold greater than that of ADAMTS-4 under physiological conditions. Our studies suggest that ADAMTS-5 is a major aggrecanase in cartilage metabolism and pathology.


Journal of Biological Chemistry | 1998

Comparative properties of two cysteine proteinases (gingipains R), the products of two related but individual genes of Porphyromonas gingivalis.

Jan Potempa; Jowita Mikolajczyk-Pawlinska; David Brassell; Daniel Nelson; Ida B. Thøgersen; Jan J. Enghild; J Travis

Proteolytic enzymes produced byPorphyromonas gingivalis are important virulence factors of this periodontopathogen. Two of these enzymes, referred to as arginine-specific cysteine proteinases (gingipains R), are the product of two related genes. Here, we describe the purification of an enzyme translated from the rgpB/rgp-2 gene (gingipain R2, RGP-2) and secreted as a single chain protein of 422 residues. The enzyme occurs in several isoforms differing in pI, molecular mass, mobility in gelatin zymography gels, and affinity to arginine-Sepharose. In comparison to the 95-kDa gingipain R1, a complex of catalytic and hemagglutinin/adhesin domains, RGP-2 showed five times lower proteolytic activity, although its activity on various P1-arginine p-nitroanilide substrates was generally higher. Gingipains R amidolytic activity, but not general proteolytic activity, was stimulated by glycyl-glycine. However, in cases of limited proteolysis, such as the inactivation of α-1-antichymotrypsin, glycyl-glycine potentiated inhibitor cleavage. In contrast, α-1-proteinase inhibitor was not inactivated by gingipains R and only underwent proteolytic degradation during boiling in reducing SDS-polyacrylamide gel electrophoresis treatment buffer. Similarly, native type I collagen was completely resistant to cleavage by gingipains but readily degraded after denaturation. Together, these data explain much of the controversy regarding gingipains structure and substrate specificity and indicate that these enzymes function asP. gingivalis virulence factors by proteolysis of selected target proteins rather than random degradation of host connective tissue components.


Molecular Microbiology | 2010

Functional amyloid in Pseudomonas

Morten Simonsen Dueholm; Steen V. Petersen; Mads Sønderkær; Poul Larsen; Gunna Christiansen; Kim L. Hein; Jan J. Enghild; Jeppe Lund Nielsen; Kåre Lehmann Nielsen; Per Halkjær Nielsen; Daniel E. Otzen

Amyloids are highly abundant in many microbial biofilms and may play an important role in their architecture. Nevertheless, little is known of the amyloid proteins. We report the discovery of a novel functional amyloid expressed by a Pseudomonas strain of the P. fluorescens group. The amyloid protein was purified and the amyloid‐like structure verified. Partial sequencing by MS/MS combined with full genomic sequencing of the Pseudomonas strain identified the gene coding for the major subunit of the amyloid fibril, termed fapC. FapC contains a thrice repeated motif that differs from those previously found in curli fimbrins and prion proteins. The lack of aromatic residues in the repeat shows that aromatic side chains are not needed for efficient amyloid formation. In contrast, glutamine and asparagine residues seem to play a major role in amyloid formation as these are highly conserved in curli, prion proteins and FapC. fapC is conserved in many Pseudomonas strains including the opportunistic pathogen P. aeruginosa and is situated in a conserved operon containing six genes, of which one encodes a fapC homologue. Heterologous expression of the fapA–F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation.


Biochemical Journal | 2003

Pigment-epithelium-derived factor (PEDF) occurs at a physiologically relevant concentration in human blood: purification and characterization.

Steen V. Petersen; Zuzana Valnickova; Jan J. Enghild

Pigment epithelium-derived factor (PEDF) inhibits the formation of blood vessels in the eye by inducing apotosis in actively dividing endothelial cells. The activity of PEDF equals or supersedes that of other anti-angiogenic factors, including angiostatin, endostatin and thrombospondin-1. In addition, PEDF has the potential to promote the survival of neurons and affect their differentiation. Here we show that PEDF is present in plasma at a concentration of approx. 100 nM (5 microg/ml) or twice the level required to inhibit aberrant blood-vessel growth in the eye. Thus the systemic delivery of PEDF has the potential to affect angiogenesis or neurotrophic processes throughout the body, significantly expanding the putative physiological role of the protein. A complete map of all post-translational modifications revealed that authentic plasma PEDF carries an N-terminal pyroglutamate blocking group and an N-linked glycan at position Asn266. The pyroglutamate residue may regulate the activity of PEDF analogously to the manner in which it regulates thyrotropin-releasing hormone.


Nature Communications | 2014

Spider genomes provide insight into composition and evolution of venom and silk

Kristian W. Sanggaard; Jesper Bechsgaard; Xiaodong Fang; Jinjie Duan; Thomas F. Dyrlund; Vikas Gupta; Xuanting Jiang; Ling Cheng; Dingding Fan; Yue Feng; Lijuan Han; Zhiyong Huang; Zongze Wu; Li Liao; Virginia Settepani; Ida B. Thøgersen; Bram Vanthournout; Tobias Wang; Yabing Zhu; Peter Funch; Jan J. Enghild; Leif Schauser; Stig U. Andersen; Palle Villesen; Mikkel H. Schierup; Trine Bilde; Jun Wang

Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1.

Szymon W. Manka; Federico Carafoli; Robert Visse; Dominique Bihan; Nicolas Raynal; Richard W. Farndale; Gillian Murphy; Jan J. Enghild; Erhard Hohenester; Hideaki Nagase

Collagenases of the matrix metalloproteinase (MMP) family play major roles in morphogenesis, tissue repair, and human diseases, but how they recognize and cleave the collagen triple helix is not fully understood. Here, we report temperature-dependent binding of a catalytically inactive MMP-1 mutant (E200A) to collagen through the cooperative action of its catalytic and hemopexin domains. Contact between the two molecules was mapped by screening the Collagen Toolkit peptide library and by hydrogen/deuterium exchange. The crystal structure of MMP-1(E200A) bound to a triple-helical collagen peptide revealed extensive interactions of the 115-Å–long triple helix with both MMP-1 domains. An exosite in the hemopexin domain, which binds the leucine 10 residues C-terminal to the scissile bond, is critical for collagenolysis and represents a unique target for inhibitor development. The scissile bond is not correctly positioned for hydrolysis in the crystallized complex. A productive binding mode is readily modeled, without altering the MMP-1 structure or the exosite interactions, by axial rotation of the collagen homotrimer. Interdomain flexing of the enzyme and a localized excursion of the collagen chain closest to the active site, facilitated by thermal loosening of the substrate, may lead to the first transition state of collagenolysis.


Free Radical Biology and Medicine | 2003

Enhanced bleomycin-induced pulmonary damage in mice lacking extracellular superoxide dismutase

Cheryl L. Fattman; Ling-Yi Chang; Toni A Termin; Louise Petersen; Jan J. Enghild; Tim D. Oury

Extracellular superoxide dismutase (EC-SOD) is highly expressed in the extracellular matrix of lung and vascular tissue. Localization of EC-SOD to the matrix of the lung may protect against oxidative tissue damage that leads to pulmonary fibrosis. This study directly examines the protective role of EC-SOD in a bleomycin model of pulmonary fibrosis and the effect of this enzyme on oxidative protein fragmentation. Mice null for ec-sod display a marked increase in lung inflammation at 14 d post-bleomycin treatment as compared to their wild-type counterparts. Hydroxyproline analysis determined that both wild-type and ec-sod null mice display a marked increase in interstitial fibrosis at 14 d post-treatment, and the severity of fibrosis is significantly increased in ec-sod null mice compared to wild-type mice. To determine if the lack of EC-SOD promotes bleomycin-induced oxidative protein modification, 2-pyrrolidone content (as a measure of oxidative protein fragmentation at proline residues) was assessed in lung tissue from treated mice. 2-Pyrrolidone levels in the lung hydrolysates from ec-sod null mice were increased at both 7 and 14 d post-bleomycin treatment as compared to wild-type mice, indicating EC-SOD can inhibit oxidative fragmentation of proteins in this specific model of oxidative stress.


Free Radical Biology and Medicine | 2002

Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia

Huaxin Sheng; Jan J. Enghild; Russell P. Bowler; Manisha Patel; Ines Batinic-Haberle; Carla L. Calvi; Brian J. Day; Robert D. Pearlstein; James D. Crapo; David S. Warner

Reactive oxygen species play a role in the response of brain to ischemia. The effects of metalloporphyrin catalytic antioxidants (AEOL 10113 and AEOL 10150) were examined after murine middle cerebral artery occlusion (MCAO). Ninety minutes after reperfusion from 90 min MCAO in the rat, AEOL 10113, AEOL 10150, or vehicle were given intracerebroventricularly. AEOL 10113 and AEOL 10150 similarly reduced infarct size (35%) and neurologic deficit. AEOL 10113 caused behavioral side effects at twice the neuroprotective dose while AEOL 10150 required a 15-fold increase from the neuroprotective dose to cause behavioral changes. AEOL 10150, given 6 h after 90 min MCAO, reduced total infarct size by 43% without temperature effects. Brain AEOL 10150 elimination t(1/2) was 10 h. In the mouse, intravenous AEOL 10150 infusion post-MCAO reduced both infarct size (25%) and neurologic deficit. Brain AEOL 10150 uptake, greater in the ischemic hemisphere, was dose- and time-dependent. AEOL 10150 had direct effects on proteomic events and ameliorated changes caused by ischemia. In primary mixed neuronal/glial cultures exposed to 2 h of O(2)/glucose deprivation, AEOL 10150 reduced lactate dehydrogenase release dose-dependently and selectively preserved aconitase activity in concentrations consistent with neuroprotection in vivo. AEOL 10150 is an effective neuroprotective compound offering a wide therapeutic window with a large margin of safety against adverse behavioral side effects.

Collaboration


Dive into the Jan J. Enghild's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim D. Oury

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henrik Karring

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge