Jan J.W. Lagendijk
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan J.W. Lagendijk.
Physics in Medicine and Biology | 2009
B W Raaymakers; Jan J.W. Lagendijk; J Overweg; J G M Kok; Alexander J.E. Raaijmakers; E M Kerkhof; R W van der Put; I Meijsing; S Crijns; F Benedosso; M. van Vulpen; C H W de Graaff; J. Allen; Kevin John Brown
At the UMC Utrecht, The Netherlands, we have constructed a prototype MRI accelerator. The prototype is a modified 6 MV Elekta (Crawley, UK) accelerator next to a modified 1.5 T Philips Achieva (Best, The Netherlands) MRI system. From the initial design onwards, modifications to both systems were aimed to yield simultaneous and unhampered operation of the MRI and the accelerator. Indeed, the simultaneous operation is shown by performing diagnostic quality 1.5 T MRI with the radiation beam on. No degradation of the performance of either system was found. The integrated 1.5 T MRI system and radiotherapy accelerator allow simultaneous irradiation and MR imaging. The full diagnostic imaging capacities of the MRI can be used; dedicated sequences for MRI-guided radiotherapy treatments will be developed. This proof of concept opens the door towards a clinical prototype to start testing MRI-guided radiation therapy (MRIgRT) in the clinic.
Radiotherapy and Oncology | 2003
Homan Dehnad; Aart J. Nederveen; Uulke A. van der Heide; R. Jeroen A. van Moorselaar; Pieter Hofman; Jan J.W. Lagendijk
BACKGROUND AND PURPOSE The aim of this study was to assess the feasibility of using gold seed implants in the prostate for position verification, using an a-Si flat panel imager as a detector during megavoltage irradiation of prostate carcinoma. This is a study to guarantee positioning accuracy in intensity-modulated radiotherapy. METHODS AND MATERIALS Ten patients with localized prostate carcinoma (T2-3) received between one and three fiducial gold markers in the prostate. All patients were treated with 3-D conformal radiotherapy with an anterior-posterior (AP) and two lateral wedge fields. The acute gastrointestinal (GI) and genitourinary (GU) toxicities were scored using common toxicity criteria scales (CTC). Using three consecutive CT scans and portal images obtained during the treatment we have studied the occurrence of any change in prostate shape (deformation), seed migration and the magnitude of translations and rotations of the prostate. RESULTS We observed no acute major complications for prostate irradiation regarding the seed implantation. The maximum acute GU toxicity grade 2 (dysuria and frequency) was observed in seven patients during the treatment. The maximum grade 2 (diarrhoea) was scored in two patients regarding the acute GI toxicities. No significant prostate deformation could be detected in the consecutive CT scans. It appeared that the distances between the markers only slightly changed during treatment (S.D. 0.5 mm). Random prostate translations were (1 S.D.) 2.1, 3.2 and 2.2 mm in the lateral (LR), AP and cranial-caudal (CC) directions, respectively, whereas systematic translations were 3.3, 4.8 and 3.5 mm in the LR, AP and CC directions, respectively. Random prostate rotations were (1 S.D.) 3.6, 1.7 and 1.9 degrees around the LR, AP and CC axis, respectively, whereas systematic rotations were 4.7, 2.0 and 2.7 degrees around the LR, AP and CC axis, respectively. CONCLUSIONS We found that the fiducial gold seeds are a safe and appropriate device to verify and correct the position of prostate during megavoltage irradiation. The amount of seed migration and prostate deformation is far below our present tumour delineation accuracy.
International Journal of Radiation Oncology Biology Physics | 2002
Aart J. Nederveen; Uulke A. van der Heide; Homan Dehnad; R. Jeroen A. van Moorselaar; Pieter Hofman; Jan J.W. Lagendijk
PURPOSE Here we study the magnitude of prostate motion during the delivery of a radiotherapy fraction. These motions have clinical consequences for on-line position verification and the choice of margins around the target volume. METHODS AND MATERIALS We studied the motion of the prostate for 10 patients during 251 radiotherapy treatment fractions by assessing the position of implanted gold markers. Gold markers of 1 mm diameter and 5 mm length were implanted in the prostate before the start of the radiotherapy. We obtained movies during each fraction using an a-Si flat-panel imager. The markers could be detected in separate frames using a marker extraction kernel. RESULTS Marker displacements as large as 9.5 mm were detected in one fraction. The motion of the prostate is greatest in the caudal-cranial and the anterior-posterior directions. Within a time window of 2 to 3 min, deviations from the initial marker position, averaged over all patients, are 0.3 +/- 0.5 mm and -0.4 +/- 0.7 mm in the anterior-posterior and caudal-cranial directions, respectively. CONCLUSIONS It appeared that on average, the intrafraction prostate motions did not result in margins larger than 1 mm, provided that the position verification is performed at time intervals of 2 to 3 min. Only for some patients performing more frequent position verification or adding extra margins of 2 to 3 mm is required to account for intrafraction prostate motions.
Physics in Medicine and Biology | 2005
Aje Raaijmakers; B W Raaymakers; Jan J.W. Lagendijk
In the framework of the development of the integration of a MRI-scanner with a linear accelerator, the influence of a lateral, magnetic field on the dose distribution has to be determined. Dose increase is expected at tissue-air boundaries, due to the electron return effect (ERE): electrons entering air will describe a circular path and return into the phantom causing extra dose deposition. Using IMRT with many beam directions, this exit dose will not constitute a problem. Dose levels behind air cavities will decrease because of the absence of electrons crossing the cavity. The ERE has been demonstrated both by simulation and experiment. Monte Carlo simulations are performed with GEANT4, irradiating a water-air-water phantom in a lateral magnetic field. Also an air tube in water has been simulated, resulting in slightly twisted regions of dose increase and decrease. Experimental demonstration is achieved by film measurement in a perspex-air-perspex phantom in an electromagnet. Although the ERE causes dose increase before air cavities, relatively flat dose profiles can be obtained for the investigated cases using opposite beam configurations. More research will be necessary whether this holds for more realistic geometries with the use of IMRT and whether the ERE can be turned to our advantage when treating small tumour sites at air cavities.
Physics in Medicine and Biology | 2004
B W Raaymakers; Aje Raaijmakers; Antj Alexis Kotte; David Jette; Jan J.W. Lagendijk
Integrating magnetic resonance imaging (MRI) functionality with a radiotherapy accelerator can facilitate on-line, soft-tissue based, position verification. A technical feasibility study, in collaboration with Elekta Oncology Systems and Philips Medical Systems, led to the preliminary design specifications of a MRI accelerator. Basically the design is a 6 MV accelerator rotating around a 1.5 T MRI system. Several technical issues and the clinical rational are currently under investigation. The aim of this paper is to determine the impact of the transverse 1.5 T magnetic field on the dose deposition. Monte Carlo simulations were used to calculate the dose deposition kernel in the presence of 1.5 T. This kernel in turn was used to determine the dose deposition for larger fields. Also simulations and measurements were done in the presence of 1.1 T. The pencil beam dose deposition is asymmetric. For larger fields the asymmetry persists but decreases. For the latter the distance to dose maximum is reduced by approximately 5 mm, the penumbra is increased by approximately 1 mm, and the 50% isodose line is shifted approximately 1 mm. The dose deposition in the presence of 1.5 T is affected, but the effect can be taken into account in a conventional treatment planning procedure. The impact of the altered dose deposition for clinical IMRT treatments is the topic of further research.
Radiotherapy and Oncology | 2003
Aart J. Nederveen; Homan Dehnad; Uulke A. van der Heide; R. Jeroen A. van Moorselaar; Pieter Hofman; Jan J.W. Lagendijk
PURPOSE The patient position during radiotherapy treatment of prostate cancer can be verified with the help of portal images acquired during treatment. In this study we quantify the clinical consequences of the use of image-based verification based on the bony anatomy and the prostate target itself. PATIENTS AND METHODS We analysed 2025 portal images and 23 computed tomography (CT) scans from 23 patients with prostate cancer. In all patients gold markers were implanted prior to CT scanning. Statistical data for both random and systematic errors were calculated for displacements of bones and markers and we investigated the effectiveness of an off-line correction protocol. RESULTS Standard deviations for systematic marker displacement are 2.4 mm in the lateral (LR) direction, 4.4 mm in the anterior-posterior (AP) direction and 3.7 mm in the caudal-cranial direction (CC). Application of off-line position verification based on the marker positions results in a shrinkage of the systematic error to well below 1 mm. Position verification based on the bony anatomy reduces the systematic target uncertainty to 50% in the AP direction and in the LR direction. No reduction was observed in the CC direction. For six out of 23 patients we found an increase of the systematic error after application of bony anatomy-based position verification. CONCLUSIONS We show that even if correction based on the bony anatomy is applied, considerable margins have to be set to account for organ motion. Our study highlights that for individual patients the systematic error can increase after application of bony anatomy-based position verification, whereas the population standard deviation will decrease. Off-line target-based position verification effectively reduces the systematic error to well below 1 mm, thus enabling significant margin reduction.
Seminars in Radiation Oncology | 2014
Jan J.W. Lagendijk; B W Raaymakers; Marco van Vulpen
The current image-guided radiotherapy systems are suboptimal in the esophagus, pancreas, kidney, rectum, lymph node, etc. These locations in the body are not easily accessible for fiducials and cannot be visualized sufficiently on cone-beam computed tomographies, making daily patient set-up prone to geometrical uncertainties and hinder dose optimization. Additional interfraction and intrafraction uncertainties for those locations arise from motion with breathing and organ filling. To allow real-time imaging of all patient tumor locations at the actual treatment position a fully integrated 1.5-T, diagnostic quality, magnetic resonance imaging with a 6-MV linear accelerator is presented. This system must enable detailed dose painting at all body locations.
Physics in Medicine and Biology | 2008
Aje Raaijmakers; B W Raaymakers; Jan J.W. Lagendijk
Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.
Radiotherapy and Oncology | 2001
Bram van Asselen; Cornelis P.J. Raaijmakers; Pieter Hofman; Jan J.W. Lagendijk
BACKGROUND AND PURPOSE In spite of the complex geometry of the breast, treatment planning for tangential breast irradiation is conventionally performed using two-dimensional patient anatomy information. The purpose of this work was to develop a new technique which takes the three-dimensional (3D) patient geometry into account. MATERIALS AND METHODS An intensity-modulated radiotherapy (IMRT) technique was developed based on the division of the tangential fields in four multi-leaf collimator (MLC) shaped segments. The shape of these segments was obtained from an equivalent path length map of the irradiated volume. Approximately 88% of the dose was delivered by two open fields covering the whole treated volume. Dose calculations for the IMRT technique and the conventional technique were performed for five patients, using computer tomography (CT) data and a 3D calculation algorithm. A planning target volume (PTV) and ipsilateral lung volume were delineated in these CT data. RESULTS All patients showed similar equivalent path length patterns. Analysis of the dose distribution showed an improved dose distribution using the IMRT technique. The dose inhomogeneity in the PTV was 9.0% (range 6.4-11.4%) for the conventional and 7.6% (range 6.5-10.3%) for the IMRT technique. The mean lung dose was reduced for the IMRT technique by approximately 10% compared with the conventional technique. CONCLUSION A new breast irradiation technique has been developed which improves the dose homogeneity within the planning target volume and reduces the dose to the lung. Furthermore, the IMRT technique creates the possibility to improve the field matching in case of multiple field irradiations of the breast and lymph nodes.
Physics in Medicine and Biology | 1996
Alexis N.T.J. Kotte; Gerard van Leeuwen; Jacob de Bree; John van der Koijk; Hans Crezee; Jan J.W. Lagendijk
In hyperthermia treatment planning vessels with a diameter larger than 0.5 mm must be treated individually. Such vessels can be described as 3D curves with associated diameters. The temperature profile along the vessel is discretized one dimensionally. Separately the tissue is discretized three dimensionally on a regular grid of voxels. The vessel as well as the tissue are positioned in one global space. Methods are supplied to describe the tissue-vessel interaction, the shift of the blood temperature profile describing the flow of blood along the vessel and the calculation of the vessel wall temperature. The calculation of the interaction is based on tissue temperature samples and the blood temperature together with the distance between the centre of the vessel and the tissue temperature sample. An analytical expression for a vessel inside a coaxial tissue cylinder is then used for the calculation of the heat flow rate across the vessel wall. The basic test system is a vessel segment embedded inside a coaxial tissue cylinder. All the tests use this setup while the following simulation parameters are varied: position and orientation of the vessel relative to the tissue grid, vessel radius, sample density of the blood temperature and power deposition inside the tissue cylinder. The blood temperature profile is examined by calculation of the local estimate of the equilibration length. All tests show excellent agreement with the theory.