Jan Kotwica
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Kotwica.
Toxicology and Applied Pharmacology | 2010
Jaroslaw Mlynarczuk; Michal H. Wrobel; Jan Kotwica
Chloro-organic compounds are persistent environmental pollutants and affect many reproductive processes. Oxytocin (OT) synthesized in luteal cells is a local regulator of ovarian activity and uterine contractions. Therefore the effect of xenobiotics on the OT prohormone synthesis, secretion of OT and progesterone (P4) from luteal cells and on myometrial contractions during early pregnancy in cows was investigated. Luteal cells and myometrial strips from a cow at early pregnancy were treated with polychlorinated biphenyl 77 (PCB 77), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE) and hexachlorocyclohexane (HCH) (1 or 10 ng/ml). The mRNA expression of neurophysin-I/oxytocin (NP-I/OT) and peptidyl-glycine-alpha-amidating mono-oxygenase (PGA) and concentration of OT and P4 were determined by RT-PCR and EIA, respectively. Moreover, the effect of xenobiotics given with P4 (12 ng/ml) on the basal and OT (10(-7)M) stimulated contractions of myometrial strips was studied. Xenobiotics increased (P<0.05) OT secretion but DDE only stimulated P4 secretion. The ratio of P4 to OT in culture medium was decreased by all xenobiotics during 9-12 weeks of pregnancy. All xenobiotics, except HCH, increased (P<0.05) mRNA expression of NP-I/OT during all stages of pregnancy and all treatments decreased (P<0.05) expression of mRNA for PGA during 9-12 weeks of pregnancy. Myometrial strips were relaxed (P<0.01) after pre-incubation with P4, while each of the xenobiotics jointly with P4 increased (P<0.01) myometrial contractions. In conclusion, the xenobiotics used increased both expression of mRNA for genes involved in OT synthesis and secretion of OT from luteal cells. This decreases the ratio of P4 to OT and presumably, in this manner, the chloro-organic compounds can influence uterine contractions and enhance risk of abortions in pregnant females.
Reproductive Biology | 2013
Magdalena K. Kowalik; Robert Rekawiecki; Jan Kotwica
Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.
Domestic Animal Endocrinology | 2009
Alexander V. Sirotkin; Ján Rafay; Jan Kotwica; Krzysztof Darlak; Francisco Valenzuela
The aim of these in vivo and in vitro studies was to examine the role of ghrelin in the control of plasma hormone concentrations, the proliferation, apoptosis and secretory activity of ovarian granulosa cells and the response of these cells to hormonal treatments. Female rabbits were injected with ghrelin (10 microg/animal/day for one week before ovulation induced by 25IU PMSG and 0.25IU LHRH). On the day of ovulation, blood samples were collected and analyzed for concentrations of progesterone (P(4)), testosterone (T), estradiol (E(2)), estrone-sulphate (ES), insulin-like growth factor I (IGF-I) and leptin (L) by RIA. Some control and ghrelin-treated animals were killed in the periovulatory period, their ovaries were weighed and granulosa cells were isolated and cultured for 2d. Cell proliferation (expression of PCNA) and apoptosis (expression of TdT) were evaluated by immunocytochemistry and TUNEL respectively. Secretion of P(4), T, E(2), IGF-I, and prostaglandin F (PGF) by granulosa cells cultured with and without LH or IGF-I (1, 10 or 100 ng/ml medium) was assessed by RIA. The remaining control and treated animals were kept until parturition, while the number, viability and body weight of pups were recorded. Ghrelin treatment increased rabbit plasma T and decreased ES concentrations but did not influence P(4), E(2), IGF-I or L. Granulosa cells from ghrelin-treated animals showed higher expression of PCNA and lower expression of TdT, than those from control animals. They also secreted less P(4), T, E(2), IGF-I and PGF than granulosa cells from untreated animals. Treatment of cultured granulosa cells with ghrelin (1, 10 or 100 ng/ml medium) either increased (at 1 ng/ml) or decreased (at 10 ng/ml) P(4) secretion, increased (at 100 ng/ml) or decreased (at 10 ng/ml) IGF-I secretion, decreased T (at 1 and 10 ng/ml) and OT (at 1 ng/ml) secretion, and increased (at 100 ng/ml) PGF secretion. LH treatment of cells from control animals stimulated P(4) (at 1 and 10 ng/ml), E(2), and IGF-I (both at 10 and 100 ng/ml), but not T secretion. IGF-I stimulated P(4) (all concentrations) and PGF (at 100 ng/ml) but suppressed T (all concentrations) and E(2) (at 1 and 10 ng/ml) secretion. Pre-treatment of animals with ghrelin stimulated, suppressed or even reversed subsequent LH and IGF-I effects on hormone secretion by cultured granulosa cells. Ghrelin injections did not affect ovarian weight or the number and body mass of pups born, although pup mortality was significantly lower in ghrelin-treated than in control mothers. These observations suggest that ghrelin is involved in the control of ovarian cell proliferation, apoptosis and secretion of hormones, as well as in the response of these cells to physiological stimulators such as LH and IGF-I.
Reproductive Biology | 2013
Magdalena K. Kowalik; Dominika Slonina; Robert Rekawiecki; Jan Kotwica
Progesterone (P4) is involved in the regulation of essential reproductive functions affecting the target cells through both nuclear progesterone receptors (PGRs) and membrane progesterone receptors. The aim of this study was to determine the mRNA and protein expression for PGRMC1, PGRMC2, SERBP1 and PGR within the bovine endometrium during the estrous cycle and the first trimester of pregnancy. There were no changes in PGRMC1 and PGRMC2 mRNA and protein expression during the estrous cycle, however, mRNA levels of PGRMC1 and PGRMC2 were increased (P<0.001) in pregnant animals. SERBP1 mRNA expression was increased (P<0.05), while the level of this protein was decreased (P<0.05) on days 11-16 of the estrous cycle. The expression of PGR mRNA was higher (P<0.01) on days 17-20 compared to days 6-10 and 11-16 of the estrous cycle and pregnancy. PGR-A and PGR-B protein levels were elevated on days 1-5 and 17-20 of the estrous cycle as compared to other stages of the cycle and during pregnancy. In conclusion, our results indicate that P4 may influence endometrial cells through both genomic and nongenomic way. This mechanism may contribute to the regulation of the estrous cycle and provide protection during pregnancy.
The Journal of Steroid Biochemistry and Molecular Biology | 2000
Alexander V. Sirotkin; Alexander V. Makarevich; Juray Pivko; Jan Kotwica; Hans-Gottfried Genieser; Jozef Bulla
The aim of the present study was to examine the role of cGMP-dependent intracellular mechanisms in control of ovarian functions. In the first series of experiments we studied the effects of the cGMP analogues 8-pCPT-cGMP (0.001-100 nM), Rp-8-pCPT-cGMPS (0. 01-100 nM), Rp-8-Br-cGMPS (0.01-100 nM), and Rp-8-Br-PET-cGMPS (0.01-100 nM) on the release of progesterone, insulin-like growth factor I (IGF-I) and oxytocin by cultured porcine granulosa cells. In a second series of experiments, the effects of Rp-8-Br-PET-cGMPS (50 nM) and KT5822 (100 ng/ml), specific inhibitor of cGMP-dependent protein kinase (PKG), on cAMP, PKA, oxytocin and the occurrence of apoptosis in cultured cells were compared. The release of hormones and IGF-I into the culture medium was evaluated using a RIA, while the percentage of cells containing visible oxytocin, cAMP, as well as the regulatory and catalytic subunits of PKA was assessed using immunocytochemistry. Occurrence of apoptosis in these cells was detected using the TUNEL method. The stimulatory (8-pCPT-cGMP and Rp-8-pCPT-cGMPS), inhibitory (Rp-8-Br-cGMPS) and biphasic (Rp-8-Br-PET-cGMPS) effect of cGMP analogues on progesterone release was observed. All cGMP analogues used suppressed IGF-I release. All cGMP analogues decreased oxytocin release, but 8-pCPT-cGMP and Rp-8-Br-cGMPS, when given at low doses (0.01-0.1 and 1-10 nM, respectively) stimulated oxytocin output. Both, Rp-8-Br-PET-cGMPS and KT5822 increased the rate of incidence of apoptosis and percentage of cells containing immunoreactive cAMP. Both Rp-8-Br-PET-cGMPS and KT5822 decreased the proportion of cells containing immunoreactive oxytocin and regulatory subunit of PAK KT5822, but not Rp-8-Br-PET-cGMPS, increased the number of cells containing catalytic subunit of PKA. The present observations suggest the involvement of cGMP and PKG in control of the production of steroid, nonapeptide hormone, growth factor, cAMP and cAMP-dependent PKA, as well as the induction of apoptosis in porcine ovarian cells.
Reproductive Biology | 2008
Magdalena K. Kowalik; Jan Kotwica
The aim of the study was to investigate progesterone receptor membrane component 1 (PGRMC1) mRNA expression in bovine corpus luteum (CL) obtained from heifers or non-pregnant cows on the following days of the estrous cycle: 1-5, 6-10, 11-16 and 17-21 (n=4/each time period). The expression of PGRMC1 mRNA, analyzed by semiquantitative RT-PCR, was the highest on days 6-10 (p<0.01) and then it declined (p<0.05). The lowest expression was found on days 1-5 (p<0.05). A significant correlation (p<0.05) was also observed between luteal progesterone (P(4)) concentration and PGRMC1 mRNA expression. These data indicate that PGRMC1 mRNA is expressed in bovine CL and this expression varies throughout the luteal phase. It is assumed that PGRMC1 may be involved in a non-genomic effect of P(4) on luteal cells.
Reproductive Biology | 2012
Robert Rekawiecki; Joanna Rutkowska; Jan Kotwica
The selection of proper housekeeping genes for studies requiring genes expression normalization is an important step in the appropriate interpretation of results. The expression of housekeeping genes is regulated by many factors including age, gender, type of tissue or disease. The aim of the study was to identify optimal housekeeping genes in the corpus luteum obtained from cyclic or pregnant cows. The mRNA expression of thirteen housekeeping genes: C2orf29, SUZ12, TBP, TUBB2B, ZNF131, HPRT1, 18s RNA, GAPDH, SF3A1, SDHA, MRPL12, B2M and ACTB was measured by Real-time PCR. Range of cycle threshold (C(t)) values of the tested genes varied between 12 and 30 cycles, and 18s RNA had the highest coefficient of variation, whereas C2orf29 had the smallest coefficient. GeNorm software demonstrated C2orf29 and TBP as the most stable and 18s RNA and B2M as the most unstable housekeeping genes. Using the proposed cut-off value (0.15), no more than two of the best GeNorm housekeeping genes are proposed to be used in studies requiring gene expression normalization. NormFinder software demonstrated C2orf29 and SUZ12 as the best and 18s RNA and B2M as the worst housekeeping genes. The study indicates that selection of housekeeping genes may essentially affect the quality of the gene expression results.
Theriogenology | 2009
Alexander V. Sirotkin; J. Rafay; Jan Kotwica
The aim of these in vivo and in vitro studies was to examine the role of leptin in the control of plasma hormone concentrations, reproduction, and secretory activity of ovarian granulosa cells. In in vivo experiments, 15 female European domestic rabbit (Oryctolagus cuniculus) were treated with leptin (5 microg animal(-1)d(-1) for 1 wk before induction of ovulation with 25 IU equine chorionic gonadotropin and 0.25 IU human chorionic gonadotropin), and 15 females constituted the control group (treated with phosphate-buffered saline). Plasma concentrations of progesterone (P(4)), testosterone (T), estradiol (E(2)), estrone sulfate (ES), and insulin-like growth factor I (IGF-I) were determined at the estimated day of ovulation by radioimmunoassay (RIA), and number, viability, and body weight of newborns were recorded at parturition. In in vitro experiments, granulosa cells were isolated from periovulatory ovarian follicles of five control and five females treated with ghrelin (10 microg animal(-1)d(-1) for 1 wk before induced ovulation). Isolated cells were cultured for 2 d with and without leptin (0, 1, 10, or 100 ng/mL medium). Secretion of P(4), T, E(2), IGF-I, and prostaglandin F (PGF) was assessed in culture medium by RIA. In in vivo experiments, leptin administrations reduced plasma P(4), T, E(2), ES, and IGF-I levels. Leptin treatments did not affect ovarian weight or total number and body mass of newborns, but the proportion of pregnant females and number of live newborns were significantly higher in leptin-treated females than that in control females. In in vitro experiments, leptin significantly decreased (at 1 and 10 ng/mL) or increased (at 100 ng/mL) P(4) secretion, promoted E(2) and IGF-I (both at 100 ng/mL) secretion, and reduced T (at 1 and 10 ng/mL) and PGF (at 10 ng/mL) secretion. Granulosa cells from ghrelin-treated animals secreted less P(4), T, E(2), and PGF, but not IGF-I, than that secreted by granulosa cells from control animals. Furthermore, pretreatment of animals with ghrelin suppressed or even reversed subsequent leptin effects on P(4), T, E(2), IGF-I, and PGF secretion by cultured granulosa cells. These observations (1) show for the first time that leptin can increase the number of live newborns in rabbits, (2) confirm previous data on the ability of leptin to control ovarian secretory activity both directly and via upstream mechanisms, (3) demonstrate the involvement of ghrelin in the control of rabbit ovarian secretory functions, and (4) suggest an antagonistic interrelationship between leptin and ghrelin in the rabbit.
Toxicology | 2009
Michal H. Wrobel; Robert Rekawiecki; Jan Kotwica
Polychlorinated biphenyls (PCBs) stimulate in vitro both the force of myometrial contractions and endometrial secretion of PGF2alpha in cattle. Therefore, the goal of this study was to investigate the participation of PGF2alpha in the effect of PCBs on uterine contractility. For this aim, the myometrial strips were incubated (48h) with PCB 77 at the dose of 1, 10 and 100ng/ml (i.e., 0.0034, 0.034 and 0.34nmol/ml) separately or jointly with indomethacin (INDO, 10(-4)M), which blocks the PGF2alpha synthesis. Next, the force of myometrial strips contractions was measured. Further, the influence of PCB 77 (0.1, 1 and 10ng/ml) on the PGF2alpha secretion from myometrial cells after 6, 24, and 48h and PCB 77 (1 and 10ng/ml) on the mRNA expression of cyclooxygenase 2 (COX-2) and PGF2alpha synthase (PGFS) in myometrial cells after 6 and 24h, was investigated. The increase (P<0.05-0.001) of the contractions force of myometrial strips evoked by each dose of PCB 77, was markedly reduced (P<0.05-001) by INDO. There was an increase (P<0.05-0.001) of both PGF2alpha secretion after all studied periods of cell incubation and mRNA expression for COX-2 and PGFS after 6h treatment of myometrial cells with PCB 77. It can be concluded that myometrial synthesis of PGF2alpha and its further secretion is a part of the mechanism by means of which PCB 77 may affect the force of myometrial contractions in cattle.
Toxicology and Applied Pharmacology | 2015
Michal H. Wrobel; Marlena Grzeszczyk; Jaroslaw Mlynarczuk; Jan Kotwica
Aldrin and dieldrin are chloroorganic insecticides which are recognised as endocrine disruptors. The aim of the study was to investigate their effect on the secretory functions of the uterus and ovary and on myometrial contractions. Myometrial strips and uterine and ovarian cells from nonpregnant cows were incubated with the xenobiotics (0.1, 1 or 10 ng/ml) for 24 or 72 h. Next, their effect on viability of myometrial, endometrial, granulosa and luteal cells, myometrial strip contractions, the synthesis and secretion of prostaglandins (PGs: PGF2α and PGE2) from uterine cells, the secretion of oestradiol (E2), testosterone (T) and oxytocin (OT) from granulosa cells and the secretion of progesterone (P4) and OT from luteal cells were determined. Neither of the xenobiotics (10 ng/ml) affected (P>0.05) the viability of the ovarian and uterine cells, while both (0.1-10 ng/ml) decreased (P<0.05) the basal and OT-stimulated myometrial contractions. In spite of these effects, neither of the insecticides affected (P>0.05) the synthesis and the secretion of PGs from the myometrial cells. Although they also did not impair the secretion of the PGs from the endometrial cells, they abolished (P<0.05) the stimulatory effect of OT (P<0.05) on the secretion of the PGs and stimulated (P<0.05) the secretion of OT from the granulosa and luteal cells. Moreover, aldrin and dieldrin stimulated secretion of E2 and T from the granulosa cells, while only dieldrin increased (P<0.05) the secretion of P4 from luteal cells. The data show that aldrin and dieldrin stimulated the secretory function of the cultured granulosa and luteal cells and inhibited the myometrial contractions of cows in vitro, which may affect on natural parturition.