Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Kuever is active.

Publication


Featured researches published by Jan Kuever.


Nature | 2004

Iron corrosion by novel anaerobic microorganisms.

Hang T. Dinh; Jan Kuever; Marc Mussmann; Achim Walter Hassel; Martin Stratmann; Friedrich Widdel

Corrosion of iron presents a serious economic problem. Whereas aerobic corrosion is a chemical process, anaerobic corrosion is frequently linked to the activity of sulphate-reducing bacteria (SRB). SRB are supposed to act upon iron primarily by produced hydrogen sulphide as a corrosive agent and by consumption of ‘cathodic hydrogen’ formed on iron in contact with water. Among SRB, Desulfovibrio species—with their capacity to consume hydrogen effectively—are conventionally regarded as the main culprits of anaerobic corrosion; however, the underlying mechanisms are complex and insufficiently understood. Here we describe novel marine, corrosive types of SRB obtained via an isolation approach with metallic iron as the only electron donor. In particular, a Desulfobacterium-like isolate reduced sulphate with metallic iron much faster than conventional hydrogen-scavenging Desulfovibrio species, suggesting that the novel surface-attached cell type obtained electrons from metallic iron in a more direct manner than via free hydrogen. Similarly, a newly isolated Methanobacterium-like archaeon produced methane with iron faster than do known hydrogen-using methanogens, again suggesting a more direct access to electrons from iron than via hydrogen consumption.


Applied and Environmental Microbiology | 2001

Diversity of Sulfur Isotope Fractionations by Sulfate-Reducing Prokaryotes

Jan Detmers; Volker Brüchert; Kirsten S. Habicht; Jan Kuever

ABSTRACT Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.0 to 42.0‰. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation. Sulfate reducers that oxidized the carbon source completely to CO2 showed greater fractionations than sulfate reducers that released acetate as the final product of carbon oxidation. Different metabolic pathways and variable regulation of sulfate transport across the cell membrane all potentially affect isotope fractionation. Previous models that explained fractionation only in terms of sulfate reduction rates appear to be oversimplified. The species-specific physiology of each sulfate reducer thus needs to be taken into account to understand the regulation of sulfur isotope fractionation during dissimilatory sulfate reduction.


Applied and Environmental Microbiology | 2007

Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene.

Birte Meyer; Jan Kuever

ABSTRACT The dissimilatory adenosine-5′-phosposulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria.


Applied and Environmental Microbiology | 2000

Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece)

Stefan M. Sievert; Jan Kuever; Gerard Muyzer

ABSTRACT In a recent publication (S. M. Sievert, T. Brinkhoff, G. Muyzer, W. Ziebis, and J. Kuever, Appl. Environ. Microbiol. 65:3834–3842, 1999) we described spatiotemporal changes in the bacterial community structure at a shallow-water hydrothermal vent in the Aegean Sea near the isle of Milos (Greece). Here we describe identification and phylogenetic analysis of the predominant bacterial populations at the vent site and their distribution at the vent site as determined by sequencing of DNA molecules (bands) excised from denaturing gradient gels. A total of 36 bands could be sequenced, and there were representatives of eight major lineages of the domainBacteria. Cytophaga-Flavobacterium andAcidobacterium were the most frequently retrieved bacterial groups. Less than 33% of the sequences exhibited 90% or more identity with cultivated organisms. The predominance of putative heterotrophic populations in the sequences retrieved is explained by the input of allochthonous organic matter at the vent site.


International Journal of Systematic and Evolutionary Microbiology | 2008

Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium

Michael Fahrbach; Jan Kuever; Markko Remesch; Birgit Huber; Peter Kämpfer; Wolfgang Dott; Juliane Hollender

A denitrifying bacterium, designated strain FS(T), was isolated from anoxic digested sludge on oestradiol [17beta-oestra-1,3,5(10)-triene-3,17-diol] or testosterone (17beta-hydroxyandrost-4-en-3-one) as the sole source of carbon and energy with nitrate as the electron acceptor. Strain FS(T) represents the first known bacterium to grow anaerobically on both oestradiol (C-18) and testosterone (C-19). Steroidal hormones were degraded completely by nitrate reduction to dinitrogen monoxide, which was further reduced to dinitrogen in stationary-phase cultures. Gram-negative cells were slightly curved rods, 0.3-0.5 x 0.6-1.6 microm in size, motile, non-fermentative, non-spore-forming and catalase- and oxidase-positive, showing optimal growth at pH 7.0, 28 degrees C and 0.1% (w/v) NaCl. Beside steroidal hormones, the bacterium utilized only a narrow range of organic substrates with nitrate as the electron acceptor, including several fatty acids and glutamate. No aerobic or anaerobic growth occurred on liquid or solid complex media. Phylogenetic analysis of the 16S rRNA gene sequence showed that strain FS(T) has no known close relatives and represents a distinct lineage within the Gammaproteobacteria. Together with the genera Nevskia, Hydrocarboniphaga, Solimonas and Sinobacter (less than 88% 16S rRNA gene sequence similarity to strain FS(T)), it forms a phylogenetic cluster separated from the families Chromatiaceae, Ectothiorhodospiraceae and Xanthomonadaceae. The quinone system of strain FS(T) consisted exclusively of ubiquinone Q-8. The dominant polar lipids were diphosphatidylglycerol and phosphatidylethanolamine. Spermidine in combination with putrescine and traces of sym-homospermidine were the basic polyamines. The major fatty acids detected in testosterone- or heptanoate-grown cells were C(15:0) and C(17:1)omega8c, minor hydroxylated fatty acids were C(11:0) 3-OH and C(12:0) 3-OH. The G+C content of the DNA was 61.9 mol%. Based on the high 16S rRNA gene sequence divergence and different phenotypic properties from previously described gammaproteobacteria in combination with chemotaxonomic data, strain FS(T) is considered to represent a new genus and species, for which the name Steroidobacter denitrificans gen. nov., sp. nov. is proposed. The type strain of Steroidobacter denitrificans is FS(T) (=DSM 18526(T) =JCM 14622(T)).


Geochemistry Geophysics Geosystems | 2007

Young volcanism and related hydrothermal activity at 5°S on the slow‐spreading southern Mid‐Atlantic Ridge

Karsten M. Haase; Sven Petersen; Andrea Koschinsky; Richard Seifert; C. W. Devey; R. Keir; Klas Lackschewitz; Bernd Melchert; Mirjam Perner; Oliver Schmale; J. Süling; Nicole Dubilier; Frank Zielinski; S. Fretzdorff; Dieter Garbe-Schönberg; Ulrike Westernströer; Christopher R. German; Timothy M. Shank; Dana R. Yoerger; O. Giere; Jan Kuever; H. Marbler; J. Mawick; Christian Mertens; Uwe Stöber; Maren Walter; C. Ostertag‐Henning; Holger Paulick; Marc Peters; Harald Strauss

The effect of volcanic activity on submarine hydrothermal systems has been well documented along fast- and intermediate-spreading centers but not from slow-spreading ridges. Indeed, volcanic eruptions are expected to be rare on slow-spreading axes. Here we report the presence of hydrothermal venting associated with extremely fresh lava flows at an elevated, apparently magmatically robust segment center on the slow-spreading southern Mid-Atlantic Ridge near 5°S. Three high-temperature vent fields have been recognized so far over a strike length of less than 2 km with two fields venting phase-separated, vapor-type fluids. Exit temperatures at one of the fields reach up to 407°C, at conditions of the critical point of seawater, the highest temperatures ever recorded from the seafloor. Fluid and vent field characteristics show a large variability between the vent fields, a variation that is not expected within such a limited area. We conclude from mineralogical investigations of hydrothermal precipitates that vent-fluid compositions have evolved recently from relatively oxidizing to more reducing conditions, a shift that could also be related to renewed magmatic activity in the area. Current high exit temperatures, reducing conditions, low silica contents, and high hydrogen contents in the fluids of two vent sites are consistent with a shallow magmatic source, probably related to a young volcanic eruption event nearby, in which basaltic magma is actively crystallizing. This is the first reported evidence for direct magmatic-hydrothermal interaction on a slow-spreading mid-ocean ridge.


Microbial Ecology | 2008

Phylogenetic Diversity and Spatial Distribution of the Microbial Community Associated with the Caribbean Deep-water Sponge Polymastia cf. corticata by 16S rRNA, aprA, and amoA Gene Analysis

Birte Meyer; Jan Kuever

Denaturing gradient gel electrophoresis (DGGE)-based analyses of 16S rRNA, aprA, and amoA genes demonstrated that a phylogenetically diverse and complex microbial community was associated with the Caribbean deep-water sponge Polymastia cf. corticata Ridley and Dendy, 1887. From the 38 archaeal and bacterial 16S rRNA phylotypes identified, 53% branched into the sponge-specific, monophyletic sequence clusters determined by previous studies (considering predominantly shallow-water sponge species), whereas 26% appeared to be P. cf. corticata specifically associated microorganisms (“specialists”); 21% of the phylotypes were confirmed to represent seawater- and sediment-derived proteobacterial species (“contaminants”) acquired by filtration processes from the host environment. Consistently, the aprA and amoA gene-based analyses indicated the presence of environmentally derived sulfur- and ammonia-oxidizers besides putative sponge-specific sulfur-oxidizing Gammaproteobacteria and Alphaproteobacteria and a sulfate-reducing archaeon. A sponge-specific, endosymbiotic sulfur cycle as described for marine oligochaetes is proposed to be also present in P. cf. corticata. Overall, the results of this work support the recent studies that demonstrated the sponge species specificity of the associated microbial community while the biogeography of the host collection site has only a minor influence on the composition. In P. cf. corticata, the specificity of the sponge–microbe associations is even extended to the spatial distribution of the microorganisms within the sponge body; distinct bacterial populations were associated with the different tissue sections, papillae, outer and inner cortex, and choanosome. The local distribution of a phylotype within P. cf. corticata correlated with its (1) phylogenetic affiliation, (2) classification as sponge-specific or nonspecifically associated microorganism, and (3) potential ecological role in the host sponge.


FEMS Microbiology Ecology | 2011

Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake

Corinne Biderre-Petit; Didier Jézéquel; Eric Dugat-Bony; Filipa Lopes; Jan Kuever; Guillaume Borrel; Eirc Viollier; Gérard Fonty; Pierre Peyret

Lake Pavin is a meromictic crater lake located in the French Massif Central area. In this ecosystem, most methane (CH(4)) produced in high quantity in the anoxic bottom layers, and especially in sediments, is consumed in the water column, with only a small fraction of annual production reaching the atmosphere. This study assessed the diversity of methanogenic and methanotrophic populations along the water column and in sediments using PCR and reverse transcription-PCR-based approaches targeting functional genes, i.e. pmoA (α-subunit of the particulate methane monooxygenase) for methanotrophy and mcrA (α-subunit of the methyl-coenzyme M reductase) for methanogenesis as well as the phylogenetic 16S rRNA genes. Although methanogenesis rates were much higher in sediments, our results confirm that CH(4) production also occurs in the water column where methanogens were almost exclusively composed of hydrogenotrophic methanogens, whereas both hydrogenotrophs and acetotrophs were almost equivalent in the sediments. Sequence analysis of markers, pmoA and the 16S rRNA gene, suggested that Methylobacter may be an important group actively involved in CH(4) oxidation in the water column. Two main phylotypes were characterized, one of which could consume CH(4) under conditions where the oxygen amount is undetectable.


Archives of Microbiology | 1993

Isolation and characterization of a new spore-forming sulfate-reducing bacterium growing by complete oxidation of catechol

Jan Kuever; Juergen Kulmer; Sigrid Jannsen; Ulrich Fischer; Karl-Heinz Blotevogel

A new mesophilic sulfate-reducing bacterium, strain Groll, was isolated from a benzoate enrichment culture inoculated with black mud from a freshwater ditch. The isolate was a spore-forming, rod-shaped, motile, gram-positive bacterium. This isolate was able of complete oxidation of several aromatic compounds including phenol, catechol, benzoate, p-and m-cresol, benzyl alcohol and vanillate. With hydrogen and carbon dioxide, formate or O-methylated aromatic compounds, autotrophic growth during sulfate reduction or homoacetogenesis was demonstrated. Lactate was not used as a substrate. SOinf4sup2-, SOinf3sup2-, and S2Oinf3sup2-were utilized as electron acceptors. Although strain Groll originated from a freshwater habitat, salt concentrations of up to 30 g·l-1 were tolerated. The optimum temperature for growth was 35–37°C. The G+C content of DNA was 42.1 mol%. This isolate is described as a new species of the genus Desulfotomaculum.


International Journal of Systematic and Evolutionary Microbiology | 2000

Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus.

Stefan M. Sievert; Thorsten Heidorn; Jan Kuever

A new mesophilic, chemolithoautotrophic, sulfur-oxidizing bacterium, strain Milos-BII1T, was isolated from a sediment sample taken from a shallow-water hydrothermal vent in the Aegean Sea with thiosulfate as electron donor and CO2 as carbon source. Based on the almost complete sequence of the 16S rRNA gene, strain Milos-BII1T forms a phylogenetic cluster with Thiobacillus hydrothermalis, Thiobacillus neapolitanus, Thiobacillus halophilus and Thiobacillus sp. W5, all of which are obligately chemolithoautotrophic bacteria. Because of their phylogenetic relatedness and their physiological similarities it is proposed to transfer these organisms to a newly established genus within the gamma-subclass of the Proteobacteria, Halothiobacillus gen. nov. (Kelly and Wood 2000). Strain Milos-BII1T represents a new species of this genus, named Halothiobacillus kellyi. Cells were Gram-negative rods and highly motile. The organism was obligately autotrophic and strictly aerobic. Nitrate was not used as electron acceptor. Chemolithoautotrophic growth was observed with thiosulfate, tetrathionate, sulfur and sulfide. Growth was observed between pH values of 3.5 and 8.5, with an optimum at pH 6.5. The temperature limits for growth were 3.5 and 49 degrees C, with an optimum between 37 and 42 degrees C. Growth occurred between 0 and 2 M NaCl, with an optimum NaCl concentration between 400 and 500 mM. The mean maximum specific growth rate on thiosulfate was 0.45 h(-1).

Collaboration


Dive into the Jan Kuever's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred A. Rainey

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar

Fred A. Rainey

Deutsche Sammlung von Mikroorganismen und Zellkulturen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G. A. Dubinina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge