Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Labuta is active.

Publication


Featured researches published by Jan Labuta.


Physical Chemistry Chemical Physics | 2014

Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes

Shinsuke Ishihara; Jan Labuta; Wim Van Rossom; Daisuke Ishikawa; Kosuke Minami; Jonathan P. Hill; Katsuhiko Ariga

Porphyrins and related families of molecules are important organic modules as has been reflected in the award of the Nobel Prizes in Chemistry in 1915, 1930, 1961, 1962, 1965, and 1988 for work on porphyrin-related biological functionalities. The porphyrin core can be synthetically modified by introduction of various functional groups and other elements, allowing creation of numerous types of porphyrin derivatives. This feature makes porphyrins extremely useful molecules especially in combination with their other interesting photonic, electronic and magnetic properties, which in turn is reflected in their diverse signal input-output functionalities based on interactions with other molecules and external stimuli. Therefore, porphyrins and related macrocycles play a preeminent role in sensing applications involving chromophores. In this review, we discuss recent developments in porphyrin-based sensing applications in conjunction with the new advanced concept of nanoarchitectonics, which creates functional nanostructures based on a profound understanding of mutual interactions between the individual nanostructures and their arbitrary arrangements. Following a brief explanation of the basics of porphyrin chemistry and physics, recent examples in the corresponding fields are discussed according to a classification based on physical modes of detection including optical detection (absorption/photoluminescence spectroscopy and energy and electron transfer processes), other spectral modes (circular dichroism, plasmon and nuclear magnetic resonance), electronic and electrochemical modes, and other sensing modes.


Nature Communications | 2013

NMR spectroscopic detection of chirality and enantiopurity in referenced systems without formation of diastereomers.

Jan Labuta; Shinsuke Ishihara; Tomáš Šikorský; Zdeněk Futera; Atsuomi Shundo; Lenka Hanyková; Jaroslav V. Burda; Katsuhiko Ariga; Jonathan P. Hill

Enantiomeric excess of chiral compounds is a key parameter that determines their activity or therapeutic action. The current paradigm for rapid measurement of enantiomeric excess using NMR is based on the formation of diastereomeric complexes between the chiral analyte and a chiral resolving agent, leading to (at least) two species with no symmetry relationship. Here we report an effective method of enantiomeric excess determination using a symmetrical achiral molecule as the resolving agent, which is based on the complexation with analyte (in the fast exchange regime) without the formation of diastereomers. The use of N,N′-disubstituted oxoporphyrinogen as the resolving agent makes this novel method extremely versatile, and appropriate for various chiral analytes including carboxylic acids, esters, alcohols and protected amino acids using the same achiral molecule. The model of sensing mechanism exhibits a fundamental linear response between enantiomeric excess and the observed magnitude of induced chemical shift non-equivalence in the 1H NMR spectra.


Journal of the American Chemical Society | 2014

Aligned 1-D nanorods of a π-gelator exhibit molecular orientation and excitation energy transport different from entangled fiber networks.

Keita Sakakibara; Parayalil Chithra; Bidisa Das; Taizo Mori; Misaho Akada; Jan Labuta; Tohru Tsuruoka; Subrata Maji; Seiichi Furumi; Lok Kumar Shrestha; Jonathan P. Hill; Somobrata Acharya; Katsuhiko Ariga; Ayyappanpillai Ajayaghosh

Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an oligo(p-phenylenevinylene)-derived π-gelator forms aligned nanorods of 340 ± 120 nm length and 34 ± 5 nm width, in which the gelator molecules are reoriented parallel to the long axis of the rods. The orientation change of the molecules results in distinct excited-state properties upon local photoexcitation, as evidenced by near-field scanning optical microscopy. A detailed understanding of the mechanism by which excitation energy migrates through these 1-D molecular assemblies might help in the design of supramolecular structures with improved charge-transport properties.


Journal of the American Chemical Society | 2009

Nuclear Magnetic Resonance Signaling of Molecular Chiral Information Using an Achiral Reagent

Atsuomi Shundo; Jan Labuta; Jonathan P. Hill; Shinsuke Ishihara; Katsuhiko Ariga

Until now NMR spectroscopic detection of guest chirality using an achiral host has not been possible in the absence of a chiral medium or auxiliary since chiral discrimination is principally based on chiral discrimination by host and/or diastereomeric host-guest complex formation. In this paper, we demonstrate that an achiral oxoporphyrinogen works as a host capable of signaling chiral information of alpha-hydroxycarboxylic acids in (1)H NMR spectroscopy. In particular, enantiomeric excess (ee) can be determined by observing the splitting of (1)H NMR resonances of the achiral host. This differs from the case of chiral hosts (shift reagents) where % ee is generally determined from the ratio of peak areas due to diastereomeric host-guest complexes. UV/vis, CD, FT-IR, and NMR spectroscopic investigations suggest that the unusual phenomenon reported here is based on formation of a complex with 1:2 stoichiometry in concert with a protonation-driven tautomerization of the host.


ACS Applied Materials & Interfaces | 2013

Naked-eye discrimination of methanol from ethanol using composite film of oxoporphyrinogen and layered double hydroxide.

Shinsuke Ishihara; Nobuo Iyi; Jan Labuta; Kenzo Deguchi; Shinobu Ohki; Masataka Tansho; Tadashi Shimizu; Yusuke Yamauchi; Pathik Sahoo; Masanobu Naito; Hideki Abe; Jonathan P. Hill; Katsuhiko Ariga

Methanol is a highly toxic substance, but it is unfortunately very difficult to differentiate from other alcohols (especially ethanol) without performing chemical analyses. Here we report that a composite film prepared from oxoporphyrinogen (OxP) and a layered double hydroxide (LDH) undergoes a visible color change (from magenta to purple) when exposed to methanol, a change that does not occur upon exposure to ethanol. Interestingly, methanol-induced color variation of the OxP-LDH composite film is retained even after removal of methanol under reduced pressure, a condition that does not occur in the case of conventional solvatochromic dyes. The original state of the OxP-LDH composite film could be recovered by rinsing it with tetrahydrofuran (THF), enabling repeated usage of the composite film. The mechanism of color variation, based on solid-state (13)C-CP/MAS NMR and solution-state (13)C NMR studies, is proposed to be anion transfer from LDH to OxP triggered by methanol exposure.


Journal of the American Chemical Society | 2013

Dynamic Breathing of CO2 by Hydrotalcite

Shinsuke Ishihara; Pathik Sahoo; Kenzo Deguchi; Shinobu Ohki; Masataka Tansho; Tadashi Shimizu; Jan Labuta; Jonathan P. Hill; Katsuhiko Ariga; Ken Watanabe; Yusuke Yamauchi; Shigeru Suehara; Nobuo Iyi

The carbon cycle of carbonate solids (e.g., limestone) involves weathering and metamorphic events, which usually occur over millions of years. Here we show that carbonate anion intercalated layered double hydroxide (LDH), a class of hydrotalcite, undergoes an ultrarapid carbon cycle with uptake of atmospheric CO2 under ambient conditions. The use of (13)C-labeling enabled monitoring by IR spectroscopy of the dynamic exchange between initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. Exchange is promoted by conditions of low humidity with a half-life of exchange of ~24 h. Since hydrotalcite-like clay minerals exist in Nature, our finding implies that the global carbon cycle involving exchange between lithosphere and atmosphere is much more dynamic than previously thought.


Journal of the American Chemical Society | 2014

Chiral Guest Binding as a Probe of Macrocycle Dynamics and Tautomerism in a Conjugated Tetrapyrrole

Jan Labuta; Zdenek Futera; Shinsuke Ishihara; Hana Kouřilová; Yoshitaka Tateyama; Katsuhiko Ariga; Jonathan P. Hill

We report chiral guest binding as a probe of prototropic tautomerism and macrocyclic inversion in a highly conjugated tetrapyrrole studied using (1)H NMR spectroscopy in conjunction with mandelic acid as the chiral guest. Both tautomerism and macrocycle inversion can be influenced in a non-trivial way depending on temperature and the respective concentrations of tetrapyrrole host, chiral guest or water. Chirality of the interacting guest is the key feature since it permits separation and detailed observation of macrocyclic inversion and tautomerism. Based on this, a methodology was developed to identify and characterize the dynamic processes. Our observations suggest that yields of products (e.g., of asymmetric reactions) can be affected by reactivity of functional groups (in molecules undergoing tautomerism or inversion) by varying solution properties including reagent concentrations and impurities such as water. This work establishes a connection between the important chemical concepts of chirality, tautomerism, and macrocyclic dynamics.


ACS Applied Materials & Interfaces | 2014

Rapid Exchange between Atmospheric CO2 and Carbonate Anion Intercalated within Magnesium Rich Layered Double Hydroxide

Pathik Sahoo; Shinsuke Ishihara; Kazuhiko Yamada; Kenzo Deguchi; Shinobu Ohki; Masataka Tansho; Tadashi Shimizu; Nii Eisaku; Ryo Sasai; Jan Labuta; Daisuke Ishikawa; Jonathan P. Hill; Katsuhiko Ariga; Bishnu Prasad Bastakoti; Yusuke Yamauchi; Nobuo Iyi

The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation.


Journal of the American Chemical Society | 2011

Reversible photoredox switching of porphyrin-bridged bis-2,6-di- tert -butylphenols

Shinsuke Ishihara; Jonathan P. Hill; Atsuomi Shundo; Gary J. Richards; Jan Labuta; Kei Ohkubo; Shunichi Fukuzumi; Akira Sato; Mark R. J. Elsegood; Simon J. Teat; Katsuhiko Ariga

Porphyrin derivatives bearing 2,6-di-tert-butylphenol substituents at their 5,15-positions undergo reversible photoredox switching between porphyrin and porphodimethene states as revealed by UV-vis spectroscopy, fluorescence spectroscopy, and X-ray single-crystal analyses. Photoredox interconversion is accompanied by substantial variations in electronic absorption and fluorescence emission spectra and a change of conformation of the tetrapyrrole macrocycle from planar to roof-shaped. Oxidation proceeds only under photoillumination of a dianionic state prepared through deprotonation using fluoride anions. Conversely, photoreduction occurs in the presence of a sacrificial electron donor. Transient absorption spectroscopy and electron spin resonance spectroscopy were applied to investigate the processes in photochemical reaction, and radical intermediates were characterized. That is, photooxidation initially results in a phenol-substituent-centered radical, while the reduction process occurs via a delocalized radical state involving both the macrocycle and 5,15-substituents. Forward and reverse photochemical processes are governed by different chemical mechanisms, giving the important benefit that conversion reactions are completely isolated, leading to better separation of the end states. Furthermore, energy diagrams based on electrochemical analyses (cyclic voltammetry) were used to account for the processes occurring during the photochemical reactions. Our molecular design indicates a simple and versatile method for producing photoredox macrocyclic compounds, which should lead to a new class of advanced functional materials suitable for application in molecular devices and machines.


Chemical Communications | 2013

Colorimetric visualization of acid–base equilibria in non-polar solvent

Atsuomi Shundo; Shinsuke Ishihara; Jan Labuta; Yosuke Onuma; Hideki Sakai; Masahiko Abe; Katsuhiko Ariga; Jonathan P. Hill

Visualization of an acid-base equilibrium in a non-polar solvent (dichloromethane), which may be extended to other solvents, is reported. It is based on an oxoporphyrinogen as a multichromic indicator of prevailing acidity in solution and presents up to six distinct hues depending on degree of protonation, tautomeric state or presence of a basic guest.

Collaboration


Dive into the Jan Labuta's collaboration.

Top Co-Authors

Avatar

Jonathan P. Hill

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shinsuke Ishihara

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Yoshitaka Matsushita

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary J. Richards

National Institute for Materials Science

View shared research outputs
Top Co-Authors

Avatar

Lenka Hanyková

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Francis D'Souza

University of North Texas

View shared research outputs
Researchain Logo
Decentralizing Knowledge