Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Lonnemann is active.

Publication


Featured researches published by Jan Lonnemann.


PLOS ONE | 2012

Grey Matter Alterations Co-Localize with Functional Abnormalities in Developmental Dyslexia: An ALE Meta- Analysis

Janosch Linkersdörfer; Jan Lonnemann; Sven Lindberg; Marcus Hasselhorn; Christian J. Fiebach

The neural correlates of developmental dyslexia have been investigated intensively over the last two decades and reliable evidence for a dysfunction of left-hemispheric reading systems in dyslexic readers has been found in functional neuroimaging studies. In addition, structural imaging studies using voxel-based morphometry (VBM) demonstrated grey matter reductions in dyslexics in several brain regions. To objectively assess the consistency of these findings, we performed activation likelihood estimation (ALE) meta-analysis on nine published VBM studies reporting 62 foci of grey matter reduction in dyslexic readers. We found six significant clusters of convergence in bilateral temporo-parietal and left occipito-temporal cortical regions and in the cerebellum bilaterally. To identify possible overlaps between structural and functional deviations in dyslexic readers, we conducted additional ALE meta-analyses of imaging studies reporting functional underactivations (125 foci from 24 studies) or overactivations (95 foci from 11 studies ) in dyslexics. Subsequent conjunction analyses revealed overlaps between the results of the VBM meta-analysis and the meta-analysis of functional underactivations in the fusiform and supramarginal gyri of the left hemisphere. An overlap between VBM results and the meta-analysis of functional overactivations was found in the left cerebellum. The results of our study provide evidence for consistent grey matter variations bilaterally in the dyslexic brain and substantial overlap of these structural variations with functional abnormalities in left hemispheric regions.


PLOS ONE | 2014

In How Many Ways is the Approximate Number System Associated with Exact Calculation

Pedro Pinheiro-Chagas; Guilherme Wood; André Knops; Helga Krinzinger; Jan Lonnemann; Isabella Starling-Alves; Klaus Willmes; Vitor Geraldi Haase

The approximate number system (ANS) has been consistently found to be associated with math achievement. However, little is known about the interactions between the different instantiations of the ANS and in how many ways they are related to exact calculation. In a cross-sectional design, we investigated the relationship between three measures of ANS acuity (non-symbolic comparison, non-symbolic estimation and non-symbolic addition), their cross-sectional trajectories and specific contributions to exact calculation. Children with mathematical difficulties (MD) and typically achieving (TA) controls attending the first six years of formal schooling participated in the study. The MD group exhibited impairments in multiple instantiations of the ANS compared to their TA peers. The ANS acuity measured by all three tasks positively correlated with age in TA children, while no correlation was found between non-symbolic comparison and age in the MD group. The measures of ANS acuity significantly correlated with each other, reflecting at least in part a common numerosity code. Crucially, we found that non-symbolic estimation partially and non-symbolic addition fully mediated the effects of non-symbolic comparison in exact calculation.


Journal of Cognitive Neuroscience | 2014

The association between gray matter volume and reading proficiency: A longitudinal study of beginning readers

Janosch Linkersdörfer; Alina Jurcoane; Sven Lindberg; Jochen Kaiser; Marcus Hasselhorn; Christian J. Fiebach; Jan Lonnemann

Neural systems involved in the processing of written language have been identified by a number of functional imaging studies. Structural changes in cortical anatomy that occur in the course of literacy acquisition, however, remain largely unknown. Here, we follow elementary school children over their first 2 years of formal reading instruction and use tensor-based morphometry to relate reading proficiency to cortical volume at baseline and follow-up measurement as well as to intraindividual longitudinal volume development between the two measurement time points. A positive relationship was found between baseline gray matter volume in the left superior temporal gyrus and subsequent changes in reading proficiency. Furthermore, a negative relationship was found between reading proficiency at the second measurement time point and intraindividual cortical volume development in the inferior parietal lobule and the precentral and postcentral gyri of the left hemisphere. These results are interpreted as evidence that reading acquisition is associated with preexisting structural differences as well as with experience-dependent structural changes involving dendritic and synaptic pruning.


Frontiers in Human Neuroscience | 2011

Micro and Macro Pattern Analyses of fMRI Data Support Both Early and Late Interaction of Numerical and Spatial Information

Jan Willem Koten; Jan Lonnemann; Klaus Willmes; André Knops

Numbers and space are two semantic primitives that interact with each other. Both recruit brain regions along the dorsal pathway, notably parietal cortex. This makes parietal cortex a candidate for the origin of numerical–spatial interaction. The underlying cognitive architecture of the interaction is still under scrutiny. Two classes of explanations can be distinguished. The early interaction approach assumes that numerical and spatial information are integrated into a single representation at a semantic level. A second approach postulates independent semantic representations. Only at the stage of response selection and preparation these two streams interact. In this study we used a numerical landmark task to identify the locus of the interaction between numbers and space. While lying in an MR scanner participants decided on the smaller of two numerical intervals in a visually presented number triplet. The spatial position of the middle number was varied; hence spatial intervals were congruent or incongruent with the numerical intervals. Responses in incongruent trials were slower and less accurate than in congruent trials. By combining across-vertex correlations (micro pattern) with a cluster analysis (macro pattern) we identified large-scale networks that were devoted to number processing, eye movements, and sensory–motor functions. Using support vector classification in different regions of interest along the intraparietal sulcus, the frontal eye fields, and supplementary motor area we were able to distinguish between congruent and incongruent trials in each of the networks. We suggest that the identified networks participate in the integration of numerical and spatial information and that the exclusive assumption of either an early or a late interaction between numerical and spatial information does not do justice to the complex interaction between both dimensions.


Frontiers in Psychology | 2013

Developmental changes in the association between approximate number representations and addition skills in elementary school children

Jan Lonnemann; Janosch Linkersdörfer; Marcus Hasselhorn; Sven Lindberg

The approximate number system (ANS) is assumingly related to mathematical learning but evidence supporting this assumption is mixed. The inconsistent findings might be attributed to the fact that different measures have been used to assess the ANS and mathematical skills. Moreover, associations between the performance on a measure of the ANS and mathematical skills may be discontinuous, i.e., stronger for children with lower math scores than for children with higher math scores, and may change with age. The aim of the present study was to examine the development of the ANS and arithmetic skills in elementary school children and to investigate how the relationship between the ANS and arithmetic skills develops. Individual markers of childrens ANS (internal Weber fractions and mean reaction times in a non-symbolic numerical comparison task) and addition skills were assessed in their first year of school and 1 year later. Children showed improvements in addition performance and in the internal Weber fractions, whereas mean reaction times in the non-symbolic numerical comparison task did not change significantly. While childrens addition performance was associated with the internal Weber fractions in the first year, it was associated with mean reaction times in the non-symbolic numerical comparison task in the second year. These associations were not found to be discontinuous and could not be explained by individual differences in reasoning, processing speed, or inhibitory control. The present study extends previous findings by demonstrating that addition performance is associated with different markers of the ANS in the course of development.


Journal of Experimental Child Psychology | 2013

Transcoding abilities in typical and atypical mathematics achievers: The role of working memory and procedural and lexical competencies

Ricardo Moura; Guilherme Wood; Pedro Pinheiro-Chagas; Jan Lonnemann; Helga Krinzinger; Klaus Willmes; Vitor Geraldi Haase

Transcoding between numerical systems is one of the most basic abilities acquired by children during their early school years. One important topic that requires further exploration is how mathematics proficiency can affect number transcoding. The aim of the current study was to investigate transcoding abilities (i.e., reading Arabic numerals and writing dictation) in Brazilian children with and without mathematics difficulties, focusing on different school grades. We observed that children with learning difficulties in mathematics demonstrated lower achievement in number transcoding in both early and middle elementary school. In early elementary school, difficulties were observed in both the basic numerical lexicon and the management of numerical syntax. In middle elementary school, difficulties appeared mainly in the transcoding of more complex numbers. An error analysis revealed that the children with mathematics difficulties struggled mainly with the acquisition of transcoding rules. Although we confirmed the previous evidence on the impact of working memory capacity on number transcoding, we found that it did not fully account for the observed group differences. The results are discussed in the context of a maturational lag in number transcoding ability in children with mathematics difficulties.


Frontiers in Psychology | 2015

Text-fading based training leads to transfer effects on children's sentence reading fluency.

Telse Nagler; Sebastian Peter Korinth; Janosch Linkersdörfer; Jan Lonnemann; Björn Rump; Marcus Hasselhorn; Sven Lindberg

Previous studies used a text-fading procedure as a training tool with the goal to increase silent reading fluency (i.e., proficient reading rate and comprehension). In recently published studies, this procedure resulted in lasting reading enhancements for adult and adolescent research samples. However, studies working with children reported mixed results. While reading rate improvements were observable for Dutch reading children in a text-fading training study, reading fluency improvements in standardized reading tests post-training attributable to the fading manipulation were not detectable. These results raise the question of whether text-fading training is not effective for children or whether research design issues have concealed possible transfer effects. Hence, the present study sought to investigate possible transfer effects resulting from a text-fading based reading training program, using a modified research design. Over a period of 3 weeks, two groups of German third-graders read sentences either with an adaptive text-fading procedure or at their self-paced reading rate. A standardized test measuring reading fluency at the word, sentence, and text level was conducted pre- and post-training. Text level reading fluency improved for both groups equally. Post-training gains at the word level were found for the text-fading group, however, no significant interaction between groups was revealed for word reading fluency. Sentence level reading fluency gains were found for the text-fading group, which significantly differed from the group of children reading at their self-paced reading routine. These findings provide evidence for the efficacy of text-fading as a training method for sentence reading fluency improvement also for children.


Frontiers in Psychology | 2013

Spatial representations of numbers and letters in children

Jan Lonnemann; Janosch Linkersdörfer; Telse Nagler; Marcus Hasselhorn; Sven Lindberg

Different lines of evidence suggest that childrens mental representations of numbers are spatially organized in form of a mental number line. It is, however, still unclear whether a spatial organization is specific for the numerical domain or also applies to other ordinal sequences in children. In the present study, children (n = 129) aged 8–9 years were asked to indicate the midpoint of lines flanked by task-irrelevant digits or letters. We found that the localization of the midpoint was systematically biased toward the larger digit. A similar, but less pronounced, effect was detected for letters with spatial biases toward the letter succeeding in the alphabet. Instead of assuming domain-specific forms of spatial representations, we suggest that ordinal information expressing relations between different items of a sequence might be spatially coded in children, whereby numbers seem to convey this kind of information in the most salient way.


PLOS ONE | 2016

Differences in arithmetic performance between Chinese and German adults are accompanied by differences in processing of non-symbolic numerical magnitude

Jan Lonnemann; Janosch Linkersdörfer; Marcus Hasselhorn; Sven Lindberg

Human beings are assumed to possess an approximate number system (ANS) dedicated to extracting and representing approximate numerical magnitude information. The ANS is assumed to be fundamental to arithmetic learning and has been shown to be associated with arithmetic performance. It is, however, still a matter of debate whether better arithmetic skills are reflected in the ANS. To address this issue, Chinese and German adults were compared regarding their performance in simple arithmetic tasks and in a non-symbolic numerical magnitude comparison task. Chinese participants showed a better performance in solving simple arithmetic tasks and faster reaction times in the non-symbolic numerical magnitude comparison task without making more errors than their German peers. These differences in performance could not be ascribed to differences in general cognitive abilities. Better arithmetic skills were thus found to be accompanied by a higher speed of retrieving non-symbolic numerical magnitude knowledge but not by a higher precision of non-symbolic numerical magnitude representations. The group difference in the speed of retrieving non-symbolic numerical magnitude knowledge was fully mediated by the performance in arithmetic tasks, suggesting that arithmetic skills shape non-symbolic numerical magnitude processing skills.


Journal of Neurolinguistics | 2011

Symbolic and non-symbolic distance effects in children and their connection with arithmetic skills

Jan Lonnemann; Janosch Linkersdörfer; Marcus Hasselhorn; Sven Lindberg

Collaboration


Dive into the Jan Lonnemann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vitor Geraldi Haase

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

André Knops

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Lehmann

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge