Jan Lüning
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Lüning.
Nature | 2004
S. Eisebitt; Jan Lüning; W. F. Schlotter; M. Lörgen; O. Hellwig; W. Eberhardt; J. Stöhr
Our knowledge of the structure of matter is largely based on X-ray diffraction studies of periodic structures and the successful transformation (inversion) of the diffraction patterns into real-space atomic maps. But the determination of non-periodic nanoscale structures by X-rays is much more difficult. Inversion of the measured diffuse X-ray intensity patterns suffers from the intrinsic loss of phase information, and direct imaging methods are limited in resolution by the available X-ray optics. Here we demonstrate a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern. Our implementation places the sample behind a lithographically manufactured mask with a micrometre-sized sample aperture and a nanometre-sized hole that defines a reference beam. As an example, we have used the resonant X-ray magnetic circular dichroism effect to image the random magnetic domain structure in a Co/Pt multilayer film with a spatial resolution of 50 nm. Our technique, which is a form of Fourier transform holography, is transferable to a wide variety of specimens, appears scalable to diffraction-limited resolution, and is well suited for ultrafast single-shot imaging with coherent X-ray free-electron laser sources.
Nature Photonics | 2013
C. Vicario; Clemens Ruchert; Fernando Ardana-Lamas; Peter Derlet; B. Tudu; Jan Lüning; Christoph P. Hauri
Controlling ultrafast magnetization dynamics by a femtosecond laser is attracting interest both in fundamental science and industry because of the potential to achieve magnetic domain switching at ever advanced speed. Here we report experiments illustrating the ultrastrong and fully coherent light-matter coupling of a high-field single-cycle THz transient to the magnetization vector in a ferromagnetic thin film. We could visualize magnetization dynamics which occur on a timescale of the THz laser cycle and two orders of magnitude faster than the natural precession response of electrons to an external magnetic field, given by the Larmor frequency. We show that for one particular scattering geometry the strong coherent optical coupling can be described within the framework of a renormalized Landau Lifshitz equation. In addition to fundamentally new insights to ultrafast magnetization dynamics the coherent interaction allows for retrieving the complex time-frequency magnetic properties and points out new opportunities in data storage technology towards significantly higher storage speed.
Nature Communications | 2012
Bastian Pfau; S. Schaffert; L. Müller; C. Gutt; A. Al-Shemmary; Felix Büttner; Renaud Delaunay; S. Düsterer; Samuel Flewett; Robert Frömter; Jan Geilhufe; Erik Guehrs; Christian M. Günther; R. Hawaldar; M. Hille; N. Jaouen; A. Kobs; K. Li; J. Mohanty; H. Redlin; W. F. Schlotter; Daniel Stickler; Rolf Treusch; Boris Vodungbo; Mathias Kläui; Hans Peter Oepen; Jan Lüning; G. Grübel; S. Eisebitt
During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic demagnetization process in each domain with spin-transport processes across the domain walls, demonstrating the importance of spin-dependent electron transport between differently magnetized regions as an ultrafast demagnetization channel. This pathway exists independent from structural inhomogeneities such as chemical interfaces, and gives rise to an ultrafast spatially varying response to optical pump pulses.
Review of Scientific Instruments | 2012
W. F. Schlotter; J. J. Turner; Michael Rowen; P. A. Heimann; Michael Holmes; O. Krupin; M. Messerschmidt; Stefan Moeller; J. Krzywinski; Regina Soufli; Mónica Fernández-Perea; N. Kelez; Sooheyong Lee; Ryan Coffee; G. Hays; M. Beye; N. Gerken; F. Sorgenfrei; Stefan P. Hau-Riege; L. Juha; J. Chalupsky; V. Hajkova; Adrian P. Mancuso; A. Singer; O. Yefanov; I. A. Vartanyants; Guido Cadenazzi; Brian Abbey; Keith A. Nugent; H. Sinn
The soft x-ray materials science instrument is the second operational beamline at the linac coherent light source x-ray free electron laser. The instrument operates with a photon energy range of 480-2000 eV and features a grating monochromator as well as bendable refocusing mirrors. A broad range of experimental stations may be installed to study diverse scientific topics such as: ultrafast chemistry, surface science, highly correlated electron systems, matter under extreme conditions, and laboratory astrophysics. Preliminary commissioning results are presented including the first soft x-ray single-shot energy spectrum from a free electron laser.
Review of Scientific Instruments | 2011
Philip A. Heimann; O. Krupin; W. F. Schlotter; J. J. Turner; J. Krzywinski; F. Sorgenfrei; Marc Messerschmidt; David Bernstein; J. Chalupský; Vera Hájková; Stefan P. Hau-Riege; Michael Holmes; L. Juha; Nicholas Kelez; Jan Lüning; Dennis Nordlund; Monica Fernandez Perea; Andreas Scherz; Regina Soufli; W. Wurth; Michael Rowen
We present the x-ray optical design of the soft x-ray materials science instrument at the Linac Coherent Light Source, consisting of a varied line-spaced grating monochromator and Kirkpatrick-Baez refocusing optics. Results from the commissioning of the monochromator are shown. A resolving power of 3000 was achieved, which is within a factor of two of the design goal.
Optics Express | 2012
O. Krupin; M. Trigo; W. F. Schlotter; Martin Beye; F. Sorgenfrei; J. J. Turner; David A. Reis; N. Gerken; Sooheyong Lee; W. S. Lee; G. Hays; Yves Acremann; Brian Abbey; Ryan Coffee; Marc Messerschmidt; Stefan P. Hau-Riege; G. Lapertot; Jan Lüning; P. A. Heimann; Regina Soufli; Mónica Fernández-Perea; Michael Rowen; Michael Holmes; S. L. Molodtsov; A. Föhlisch; W. Wurth
The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.
Nature Communications | 2015
Guillaume Lambert; B. Vodungbo; J. Gautier; B. Mahieu; Victor Malka; S. Sebban; Philippe Zeitoun; Jan Lüning; Jonathan Perron; A. Andreev; S. Stremoukhov; F. Ardana-Lamas; A. Dax; Christoph P. Hauri; Anna Barszczak Sardinha; M. Fajardo
Recent advances in high-harmonic generation gave rise to soft X-ray pulses with higher intensity, shorter duration and higher photon energy. One of the remaining shortages of this source is its restriction to linear polarization, since the yield of generation of elliptically polarized high harmonics has been low so far. We here show how this limitation is overcome by using a cross-polarized two-colour laser field. With this simple technique, we reach high degrees of ellipticity (up to 75%) with efficiencies similar to classically generated linearly polarized harmonics. To demonstrate these features and to prove the capacity of our source for applications, we measure the X-ray magnetic circular dichroism (XMCD) effect of nickel at the M2,3 absorption edge around 67 eV. There results open up the way towards femtosecond time-resolved experiments using high harmonics exploiting the powerful element-sensitive XMCD effect and resolving the ultrafast magnetization dynamics of individual components in complex materials.
Review of Scientific Instruments | 2014
Sorin G. Chiuzbăian; C. F. Hague; Antoine Avila; Renaud Delaunay; N. Jaouen; Maurizio Sacchi; François Polack; Muriel Thomasset; Bruno Lagarde; Alessandro Nicolaou; Stefania Brignolo; Cédric Baumier; Jan Lüning; Jean-Michel Mariot
A soft x-ray spectrometer based on the use of an elliptical focusing mirror and a plane varied line spacing grating is described. It achieves both high resolution and high overall efficiency while remaining relatively compact. The instrument is dedicated to resonant inelastic x-ray scattering studies. We set out how this optical arrangement was judged best able to guarantee performance for the 50 - 1000 eV range within achievable fabrication targets. The AERHA (adjustable energy resolution high acceptance) spectrometer operates with an effective angular acceptance between 100 and 250 μsr (energy dependent) and a resolving power well in excess of 5000 according to the Rayleigh criterion. The high angular acceptance is obtained by means of a collecting pre-mirror. Three scattering geometries are available to enable momentum dependent measurements with 135°, 90°, and 50° scattering angles. The instrument operates on the Synchrotron SOLEIL SEXTANTS beamline which serves as a high photon flux 2 × 200 μm(2) focal spot source with full polarization control.
Optics Letters | 2007
W. F. Schlotter; Jan Lüning; R. Rick; Kang Chen; Andreas Scherz; S. Eisebitt; Christian M. Günther; W. Eberhardt; Olav Hellwig; J. Stöhr
Panoramic full-field imaging is demonstrated by applying spatial multiplexing to Fourier transform holography. Multiple object and reference waves extend the effective field of view for lensless imaging without compromising the spatial resolution. In this way, local regions of interest distributed throughout a sample can be simultaneously imaged with high spatial resolution. A method is proposed for capturing multiple ultrafast images of a sample with a single x-ray pulse.
Scientific Reports | 2016
Boris Vodungbo; Bahrati Tudu; Jonathan Perron; Renaud Delaunay; L. Müller; M. H. Berntsen; G. Grübel; Gregory Malinowski; Christian Weier; J. Gautier; Guillaume Lambert; Philippe Zeitoun; C. Gutt; Emmanuelle Jal; A. H. Reid; Patrick Granitzka; N. Jaouen; Georgi L. Dakovski; Stefan Moeller; Michael P. Minitti; Ankush Mitra; S. Carron; Bastian Pfau; Clemens von Korff Schmising; Michael D. Schneider; S. Eisebitt; Jan Lüning
Does the excitation of ultrafast magnetization require direct interaction between the photons of the optical pump pulse and the magnetic layer? Here, we demonstrate unambiguously that this is not the case. For this we have studied the magnetization dynamics of a ferromagnetic cobalt/palladium multilayer capped by an IR-opaque aluminum layer. Upon excitation with an intense femtosecond-short IR laser pulse, the film exhibits the classical ultrafast demagnetization phenomenon although only a negligible number of IR photons penetrate the aluminum layer. In comparison with an uncapped cobalt/palladium reference film, the initial demagnetization of the capped film occurs with a delayed onset and at a slower rate. Both observations are qualitatively in line with energy transport from the aluminum layer into the underlying magnetic film by the excited, hot electrons of the aluminum film. Our data thus confirm recent theoretical predictions.