Jan M. Bruder
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan M. Bruder.
PLOS ONE | 2013
Peter Reinhardt; Michael Glatza; Kathrin Hemmer; Yaroslav Tsytsyura; Cora S. Thiel; Susanne Höing; Sören Moritz; Juan A. Parga; Lydia Wagner; Jan M. Bruder; Guangming Wu; Benjamin Schmid; Albrecht Röpke; Jürgen Klingauf; Jens Christian Schwamborn; Thomas Gasser; Hans R. Schöler; Jared Sterneckert
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development.
Journal of Biomaterials Science-polymer Edition | 2007
Jan M. Bruder; Andrea P. Lee; Diane Hoffman-Kim
It is well established that Schwann cells (SCs) promote and enhance axon guidance and nerve regeneration by providing multiple cues, including extracellular matrix, cell surface molecules, neurotrophic factors and cellular topography. Which of the elements of the complex environment associated with SCs provides the essential information for directed nerve growth is unclear, because, until now, it has been impossible to investigate their contributions individually. Our development of biomimetic materials that replicate the micro- and nanoscale topography of SCs has allowed us to investigate for the first time the role of cellular topography in directing nerve growth. Dorsal root ganglion (DRG) neurons were cultured on flat poly(dimethyl siloxane) (PDMS) and on PDMS replicas with protruding SC topography. Image analysis showed that more neurons adhered to the replicas than to the flat substrates, and that neurite growth on the replicas followed the underlying SC pattern. Neuronal alignment was dependent on cell density. Live SCs derived from the DRG also grew along the replica SC pattern. These results suggest that the combination of micro- and nanoscale topographical cues provided by SCs can influence nerve growth and point toward design parameters for future nerve guidance channels.
Journal of Neural Engineering | 2011
J A Richardson; C W Rementer; Jan M. Bruder; Diane Hoffman-Kim
Biomimetic replicas of cellular topography have been utilized to direct neurite outgrowth. Here, we cultured postnatal rat dorsal root ganglion (DRG) explants in the presence of Schwann cell (SC) topography to determine the influence of SC topography on neurite outgrowth. Four distinct poly(dimethyl siloxane) conduits were fabricated within which DRG explants were cultured. To determine the contribution of SC topographical features to neurite guidance, the extent of neurite outgrowth into unpatterned conduits, conduits with randomly oriented SC replicas, and conduits with SC replicas parallel or perpendicular to the conduit long axis was measured. Neurite directionality and outgrowth from DRG were also quantified on two-dimensional SC replicas with orientations corresponding to the four conduit conditions. Additionally, live SC migration and neurite extension from DRG on SC replicas were examined as a first step toward quantification of the interactions between live SC and navigating neurites on SC replicas. DRG neurite outgrowth and morphology within conduits and on two-dimensional SC replicas were directed by the underlying SC topographical features. Maximal neurite outgrowth and alignment to the underlying features were observed into parallel conduits and on parallel two-dimensional substrates, whereas the least extent of outgrowth was observed into perpendicular conduits and on perpendicular two-dimensional replica conditions. Additionally, neurites on perpendicular conditions turned to extend along the direction of underlying SC topography. Neurite outgrowth exceeded SC migration in the direction of the underlying anisotropic SC replica after two days in culture. This finding confirms the critical role that SC have in guiding neurite outgrowth and suggests that the mechanism of neurite alignment to SC replicas depends on direct contact with cellular topography. These results suggest that SC topographical replicas may be used to direct and optimize neurite alignment, and emphasize the importance of SC features in neurite guidance.
PLOS ONE | 2012
Jan M. Bruder; Zachary Pfeiffer; Jonathan M. Ciriello; Diana M. Horrigan; Nadine L. Wicks; Benjamin Flaherty; Elena Oancea
Melanocytes present in skin and other organs synthesize and store melanin pigment within membrane-delimited organelles called melanosomes. Exposure of human skin to ultraviolet radiation (UV) stimulates melanin production in melanosomes, followed by transfer of melanosomes from melanocytes to neighboring keratinocytes. Melanosomal function is critical for protecting skin against UV radiation, but the mechanisms underlying melanosomal movement and transfer are not well understood. Here we report a novel fluorescent melanosomal marker, which we used to measure real-time melanosomal dynamics in live human epidermal melanocytes (HEMs) and transfer in melanocyte-keratinocyte co-cultures. A fluorescent fusion protein of Ocular Albinism 1 (OA1) localized to melanosomes in both B16-F1 cells and HEMs, and its expression did not significantly alter melanosomal distribution. Live-cell tracking of OA1-GFP-tagged melanosomes revealed a bimodal kinetic profile, with melanosomes exhibiting combinations of slow and fast movement. We also found that exposure to UV radiation increased the fraction of melanosomes exhibiting fast versus slow movement. In addition, using OA1-GFP in live co-cultures, we monitored melanosomal transfer using time-lapse microscopy. These results highlight OA1-GFP as a specific and effective melanosomal marker for live-cell studies, reveal new aspects of melanosomal dynamics and transfer, and are relevant to understanding the skin’s physiological response to UV radiation.
Journal of Biomaterials Science-polymer Edition | 2004
Jill A. O'Loughlin; Jan M. Bruder; Michael J. Lysaght
This paper begins with an extensive review of previous research on the degradation of non-protein nitrogen compounds for improved therapy of renal failure. During the 1970s, Malchesky established that naturally occurring strains of microorganisms were highly effective for the in vitro degradation of urea and other compounds found in urine, and that these bacteria could be conditioned with selected media to enhance growth and degradation efficiency. A few years later, Setala introduced the concept of oral delivery of lyophilized bacteria, harvested from soil, to uremic patients, for degradation of non-protein nitrogen compounds. In the 1990s, Chang proposed delivery of encapsulated genetically modified bacteria for removal of uremic waste products in vitro and in vivo. Recently, our group has pursued the idea of orally delivering formulated combinations of enzymes or modified bacteria. A new study is also described, which characterizes the capacity of a single alginate microcapsule containing a mixture of genetically modified cells and enzyme to degrade urea, uric acid and creatinine. The combination capsules were found to be effective in vitro and in vivo in a rodent model of chemically-induced renal failure. Reduction of urea concentration in vivo required co-administration of a cation exchange resin to adsorb ammonia. Increased investigative effort is warranted for these approaches which offer significant potential as an adjunct to conventional forms of dialysis.
Biomaterials | 2006
Joshua S. Goldner; Jan M. Bruder; Grace N. Li; Daniele Gazzola; Diane Hoffman-Kim
Journal of Investigative Dermatology | 2006
Anelisa B. Campaner; Lydia Masako Ferreira; Alfredo Gragnani; Jan M. Bruder; Jennifer L. Cusick; Jeffrey R. Morgan
Langmuir | 2006
Jan M. Bruder; Nicholas C. Monu; Michael W. Harrison; Diane Hoffman-Kim
Asaio Journal | 2004
Jill A. O'Loughlin; Jan M. Bruder; Michael J. Lysaght
Tissue Engineering | 2004
Jill A. O'Loughlin; Jan M. Bruder; Michael J. Lysaght