Jan M. Herter
Brigham and Women's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan M. Herter.
Journal of Immunology | 2013
Jan M. Herter; Alexander Zarbock
Integrins are recognized as vital players in leukocyte recruitment. Integrin malfunction causes severe disease patterns characterized by the inability to fight pathogens. Although inflammatory reactions are beneficial and necessary for host defense, these reactions have to be controlled to prevent tissue destruction and harmful sequelae. In this review, we discuss the different signaling pathways leading to the change of integrin adhesiveness in neutrophils, monocytes, and lymphocytes. We thereby focus on the importance of integrin activation for the different steps of the leukocyte recruitment cascade, including rolling, adhesion, postadhesion strengthening, intravascular crawling, and transmigration, as each step necessitates the proper functioning of a distinct set of integrin molecules that has to be activated specifically. Additionally, we discuss endogenous mechanisms that balance and counteract integrin activation and limit leukocyte recruitment at the site of inflammation. Further insight into these complex mechanisms may provide new approaches for developing new anti-inflammatory therapies.
Blood | 2014
Jan Rossaint; Jan M. Herter; Hugo Van Aken; Markus Napirei; Yvonne Döring; Christian Weber; Oliver Soehnlein; Alexander Zarbock
There is emerging evidence that neutrophil extracellular traps (NETs) play important roles in inflammatory processes. Here we report that neutrophils have to be simultaneously activated by integrin-mediated outside-in- and G-protein-coupled receptor (GPCR) signaling to induce NET formation in acute lung injury (ALI), which is associated with a high mortality rate in critically ill patients. NETs consist of decondensed chromatin decorated with granular and cytosolic proteins and they can trap extracellular pathogens. The prerequisite for NET formation is the activation of neutrophils and the release of their DNA. In a neutrophil- and platelet-dependent mouse model of ventilator-induced lung injury (VILI), NETs were found in the lung microvasculature, and circulating NET components increased in the plasma. In this model, blocking integrin-mediated outside-in or either GPCR-signaling or heteromerization of platelet chemokines decreased NET formation and lung injury. Targeting NET components by DNAse1 application or neutrophil elastase-deficient mice protected mice from ALI, whereas DNase1(-/-)/Trap1(m/m) mice had an aggravated ALI, suggesting that NETs directly influence the severity of ALI. These data suggest that NETs form in the lungs during VILI, contribute to the disease process, and thus may be a promising new direction for the treatment of ALI.
Journal of Thrombosis and Haemostasis | 2014
Jan M. Herter; Jan Rossaint; Alexander Zarbock
The paradigm of platelets as mere mediators of hemostasis has long since been replaced by a dual role: hemostasis and inflammation. Now recognized as key players in innate and adaptive immune responses, platelets have the capacity to interact with almost all known immune cells. These platelet–immune cell interactions represent a hallmark of immunity, as they can potently enhance immune cell functions and, in some cases, even constitute a prerequisite for host defense mechanisms such as NETosis. In addition, recent studies have revealed a new role for platelets in immunity: They are ubiquitous sentinels and rapid first‐line immune responders, as platelet–pathogen interactions within the vasculature appear to precede all other host defense mechanisms. Here, we discuss recent advances in our understanding of platelets as inflammatory cells, and provide an exemplary review of their role in acute inflammation.
JCI insight | 2016
Grit S. Herter-Sprie; Shohei Koyama; Houari Korideck; Josephine Hai; Jiehui Deng; Yvonne Y. Li; Kevin A. Buczkowski; Aaron K. Grant; Soumya Ullas; Kevin Rhee; Jillian D. Cavanaugh; Neermala Poudel Neupane; Camilla L. Christensen; Jan M. Herter; G. Mike Makrigiorgos; F. Stephen Hodi; Gordon J. Freeman; Glenn Dranoff; Peter S. Hammerman; Alec C. Kimmelman; Kwok-Kin Wong
Radiation therapy (RT), a critical modality in the treatment of lung cancer, induces direct tumor cell death and augments tumor-specific immunity. However, despite initial tumor control, most patients suffer from locoregional relapse and/or metastatic disease following RT. The use of immunotherapy in non-small-cell lung cancer (NSCLC) could potentially change this outcome by enhancing the effects of RT. Here, we report significant (up to 70% volume reduction of the target lesion) and durable (up to 12 weeks) tumor regressions in conditional Kras-driven genetically engineered mouse models (GEMMs) of NSCLC treated with radiotherapy and a programmed cell death 1 antibody (αPD-1). However, while αPD-1 therapy was beneficial when combined with RT in radiation-naive tumors, αPD-1 therapy had no antineoplastic efficacy in RT-relapsed tumors and further induced T cell inhibitory markers in this setting. Furthermore, there was differential efficacy of αPD-1 plus RT among Kras-driven GEMMs, with additional loss of the tumor suppressor serine/threonine kinase 11/liver kinase B1 (Stk11/Lkb1) resulting in no synergistic efficacy. Taken together, our data provide evidence for a close interaction among RT, T cells, and the PD-1/PD-L1 axis and underscore the rationale for clinical combinatorial therapy with immune modulators and radiotherapy.
Cell Reports | 2015
Florencia Rosetti; Yunfeng Chen; Mehmet Sen; Elizabeth Thayer; Veronica Azcutia; Jan M. Herter; F. William Luscinskas; Xavier Cullere; Cheng Zhu; Tanya N. Mayadas
Leukocyte CD18 integrins increase their affinity for ligand by transmitting allosteric signals to and from their ligand-binding αI domain. Mechanical forces induce allosteric changes that paradoxically slow dissociation by increasing the integrin/ligand bond lifetimes, referred to as catch bonds. Mac-1 formed catch bonds with its ligands. However, a Mac-1 gene (ITGAM) coding variant (rs1143679, R77H), which is located in the β-propeller domain and is significantly associated with systemic lupus erythematosus risk, exhibits a marked impairment in 2D ligand affinity and affinity maturation under mechanical force. Targeted mutations and activating antibodies reveal that the failure in Mac-1 R77H allostery is rescued by induction of cytoplasmic tail separation and full integrin extension. These findings demonstrate roles for R77, and the β-propeller in which it resides, in force-induced allostery relay and integrin bond stabilization. Defects in these processes may have pathological consequences, as the Mac-1 R77H variant is associated with increased susceptibility to lupus.
Nature Communications | 2014
Grit S. Herter-Sprie; Houari Korideck; Camilla L. Christensen; Jan M. Herter; Kevin Rhee; R Berbeco; David G. Bennett; Esra A. Akbay; David Kozono; Raymond H. Mak; G. Mike Makrigiorgos; Alec C. Kimmelman; Kwok-Kin Wong
Close resemblance of murine and human trials is essential to achieve the best predictive value of animal-based translational cancer research. Kras-driven genetically engineered mouse models of non-small-cell lung cancer faithfully predict the response of human lung cancers to systemic chemotherapy. Owing to development of multifocal disease, however, these models have not been usable in studies of outcomes following focal radiotherapy (RT). We report the development of a preclinical platform to deliver state-of-the-art image-guided RT in these models. Presence of a single tumour as usually diagnosed in patients is modelled by confined injection of adenoviral Cre recombinase. Furthermore, three-dimensional conformal planning and state-of-the-art image-guided dose delivery are performed as in humans. We evaluate treatment efficacies of two different radiation regimens and find that Kras-driven tumours can temporarily be stabilized upon RT, whereas additional loss of either Lkb1 or p53 renders these lesions less responsive to RT. Current genetic mouse models of lung cancer develop multifocal tumours in all lobes, which limits their applicability to model radiotherapy of human disease. Here Herter-Sprie et aldevelop a method to induce single lung tumours in these models, allowing precise evaluation of radiation regiment efficacy.
EBioMedicine | 2016
Koshu Okubo; Mako Kamiya; Yasuteru Urano; Hiroshi Nishi; Jan M. Herter; Tanya N. Mayadas; Daigoro Hirohama; Kazuo Suzuki; Hiroshi Kawakami; Mototsugu Tanaka; Miho Kurosawa; Shinji Kagaya; Keiichi Hishikawa; Masaomi Nangaku; Toshiro Fujita; Matsuhiko Hayashi; Junichi Hirahashi
Neutrophils are central players in the innate immune system. They generate neutrophil extracellular traps (NETs), which protect against invading pathogens but are also associated with the development of autoimmune and/or inflammatory diseases and thrombosis. Here, we report that lactoferrin, one of the components of NETs, translocated from the cytoplasm to the plasma membrane and markedly suppressed NETs release. Furthermore, exogenous lactoferrin shrunk the chromatin fibers found in released NETs, without affecting the generation of oxygen radicals, but this failed after chemical removal of the positive charge of lactoferrin, suggesting that charge-charge interactions between lactoferrin and NETs were required for this function. In a model of immune complex-induced NET formation in vivo, intravenous lactoferrin injection markedly reduced the extent of NET formation. These observations suggest that lactoferrin serves as an intrinsic inhibitor of NETs release into the circulation. Thus, lactoferrin may represent a therapeutic lead for controlling NETs release in autoimmune and/or inflammatory diseases.
Journal of The American Society of Nephrology | 2015
Ibrahim Batal; Sacha A. De Serres; Kassem Safa; Vanesa Bijol; Takuya Ueno; Maristela L. Onozato; A. John Iafrate; Jan M. Herter; Andrew H. Lichtman; Tanya N. Mayadas; Indira Guleria; Helmut G. Rennke; Nader Najafian; Anil Chandraker
Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival.
JCI insight | 2017
Rachael A. Gordon; Jan M. Herter; Florencia Rosetti; Allison M. Campbell; Hiroshi Nishi; Michael Kashgarian; Sheldon Bastacky; Anthony Marinov; Kevin M. Nickerson; Tanya N. Mayadas; Mark J Shlomchik
Though recent reports suggest that neutrophil extracellular traps (NETs) are a source of antigenic nucleic acids in systemic lupus erythematosus (SLE), we recently showed that inhibition of NETs by targeting the NADPH oxidase complex via cytochrome b-245, β polypeptide (cybb) deletion exacerbated disease in the MRL.Faslpr lupus mouse model. While these data challenge the paradigm that NETs promote lupus, it is conceivable that global regulatory properties of cybb and cybb-independent NETs confound these findings. Furthermore, recent reports indicate that inhibitors of peptidyl arginine deiminase, type IV (Padi4), a distal mediator of NET formation, improve lupus in murine models. Here, to clarify the contribution of NETs to SLE, we employed a genetic approach to delete Padi4 in the MRL.Faslpr model and used a pharmacological approach to inhibit PADs in both the anti-glomerular basement membrane model of proliferative nephritis and a human-serum-transfer model of SLE. In contrast to prior inhibitor studies, we found that deletion of Padi4 did not ameliorate any aspect of nephritis, loss of tolerance, or immune activation. Pharmacological inhibition of PAD activity had no effect on end-organ damage in inducible models of glomerulonephritis. These data provide a direct challenge to the concept that NETs promote autoimmunity and target organ injury in SLE.
Nature Communications | 2015
Jan M. Herter; Nir Grabie; Xavier Cullere; Veronica Azcutia; Florencia Rosetti; Paul M. Bennett; Grit S. Herter-Sprie; Wassim Elyaman; Francis W. Luscinskas; Andrew H. Lichtman; Tanya N. Mayadas
The mechanisms driving T cell homing to lymph nodes and migration to tissue are well described but little is known about factors that affect T cell egress from tissues. Here, we generate mice with a T cell-specific deletion of the scaffold protein A kinase anchoring protein 9 (AKAP9) and use models of inflammatory disease to demonstrate that AKAP9 is dispensable for T cell priming and migration into tissues and lymph nodes, but is required for T cell retention in tissues. AKAP9 deficiency results in increased T cell egress to draining lymph nodes, which is associated with impaired T cell re-activation in tissues and protection from organ damage. AKAP9-deficient T cells exhibit reduced microtubule-dependent recycling of TCRs back to the cell surface and this affects antigen-dependent activation, primarily by non-classical antigen-presenting cells. Thus, AKAP9-dependent TCR trafficking drives efficient T cell re-activation and extends their retention at sites of inflammation with implications for disease pathogenesis.