Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan M. van der Wolf.
European Journal of Plant Pathology | 2009
M. Slawiak; Jose R. C. M. van Beckhoven; Adrianus Speksnijder; Robert Czajkowski; Grzegorz J. Grabe; Jan M. van der Wolf
Sixty-five potato strains of the soft rot-causing plant pathogenic bacterium Dickeya spp., and two strains from hyacinth, were characterised using biochemical assays, REP-PCR genomic finger printing, 16S rDNA and dnaX sequence analysis. These methods were compared with nineteen strains representing six Dickeya species which included the type strains. A group of twenty-two potato strains isolated between 2005-2007 in the Netherlands, Poland, Finland and Israel were characterised as belonging to biovar 3. They were 100% identical in REP-PCR, dnaX and 16S rDNA sequence analysis. In a polyphasic analysis they formed a new clade different from the six Dickeya species previously described, and may therefore constitute a new species. The strains were very similar to a Dutch strain from hyacinth. On the basis of dnaX sequences and biochemical assays, all other potato strains isolated in Europe between 1979 and 1994 were identified as D. dianthicola (biovar 1 and 7), with the exception of two German strains classified as D. dieffenbachia (biovar 2) and D. dadantii (biovar 3), respectively. Potato strains from Peru were classified as D. dadantii, from Australia as D. zeae and from Taiwan as D. chrysanthemi bv. parthenii, indicating that different Dickeya species are found in association with potato.
European Journal of Plant Pathology | 2008
Eisse G. de Haan; Toos C. E. M. Dekker-Nooren; Gé w. Van Den Bovenkamp; A.G.C.L. Speksnijder; Patricia S. van der Zouwen; Jan M. van der Wolf
It is well established that the pectinolytic bacteria Pectobacterium atrosepticum (Pca) and Dickeya spp. are causal organisms of blackleg in potato. In temperate climates, the role of Pectobacterium carotovorum subsp. carotovorum (Pcc) in potato blackleg, however, is unclear. In different western and central European countries plants are frequently found with blackleg from which only Pcc can be isolated, but not Pca or Dickeya spp. Nevertheless, tubers vacuum-infiltrated with Pcc strains have so far never yielded blackleg-diseased plants in field experiments in temperate climates. In this study, it is shown that potato tubers, vacuum-infiltrated with a subgroup of Pcc strains isolated in Europe, and planted in two different soil types, can result in up to 50% blackleg diseased plants.
Journal of Virological Methods | 2008
J.H.W. Bergervoet; J. Peters; Jose R. C. M. van Beckhoven; Gé W. van den Bovenkamp; James W. Jacobson; Jan M. van der Wolf
To monitor seed potatoes for potato virus X, Y and PLRV, a multiplex microsphere immunoassay (MIA) was developed based on the Luminex xMAP technology, as an alternative to ELISA. The xMAP technology allowed detection of a number of antigens simultaneously whereas ELISA only allowed simplex detection of antigens. The use of paramagnetic beads in the MIA procedure allowed efficient removal of excess sample compounds and reagents. This resulted in lower background values and a higher specificity than a non-wash MIA procedure using conventional beads. In a simplex MIA detection, levels for PVY and PLRV in potato leaf extracts were 10 times lower than ELISA but for PVX 10 timers higher, whereas the specificity was similar. Results of a multiplex assay performed on viruses added to potato leaf extracts were largely similar to those of ELISA for individual viruses. Results of samples infected naturally with PVX, PVY or PLRV were comparable with ELISA.
European Journal of Plant Pathology | 2009
F. Tinivella; Lucia M. Hirata; Mikael A. Celan; Sandra A. I. Wright; T. Amein; Annegret Schmitt; Eckhard Koch; Jan M. van der Wolf; S.P.C. Groot; Dietrich Stephan; A. Garibaldi; Maria Lodovica Gullino
Greenhouse trials were carried out in order to test the efficacy of different seed treatments as alternatives to chemicals against Colletotrichum lindemuthianum cause of anthracnose on bean and Ascochyta spp. cause of Ascochyta blights on pea, respectively. Resistance inducers, commercially formulated microorganisms, non-formulated selected strains of different microorganisms (fungi, bacteria and yeasts) and plant extracts were applied as dry or liquid seed treatments on naturally infested seeds. Seedling emergence and disease incidence and/or severity were recorded. Almost all seed treatments turned out to be ineffective in controlling the Ascochyta infections, which is in line with the literature stating that these pathogens are difficult to control. The only alternative treatments that gave some control of Ascochyta spp. were thyme oil and a strain of Clonostachys rosea. The resistance inducers tested successfully controlled infections of bean by C. lindemuthianum. Among the formulated microorganisms, Bacillus subtilis-based formulations provided the best protection from anthracnose. Some strains of Pseudomonas putida, a disease-suppressive, saprophytic strain of Fusarium oxysporum and the mustard powder-based product Tillecur also proved to be effective against bean anthracnose. However, among the resistance inducers as well as among the other groups, certain agents caused a significant reduction of plant emergence. Different alternative seed treatments can therefore be used for the control of C. lindemuthianum on bean, while on pea only thyme oil and a strain of Clonostachys rosea showed some effectiveness against Ascochyta spp.
European Journal of Plant Pathology | 2010
Eckhard Koch; Annegret Schmitt; Dietrich Stephan; C. Kromphardt; Marga Jahn; Hermann-Josef Krauthausen; G. Forsberg; S. Werner; T. Amein; Sandra A. I. Wright; F. Tinivella; Maria Lodovica Gullino; Steven J. Roberts; Jan M. van der Wolf; S.P.C. Groot
The current study was initiated to evaluate the efficacy of physical methods (hot water, aerated steam, electron treatment) and agents of natural origin (resistance inducers, plant derived products, micro-organisms) as seed treatments of carrots for control of Alternaria dauci and A. radicina. Control of both Alternaria species by seed treatment with the resistance inducers was generally poor. Results were also not satisfactory with most of the formulated commercial micro-organism preparations. Based on the average of five field trials, one of these, BA 2552 (Pseudomonas chlororaphis), provided a low but significant increase in plant stand. Among the experimental micro-organisms, the best results were obtained with Pseudomonas sp. strain MF 416 and Clonostachys rosea strain IK726. A similar level of efficacy was provided by seed treatment with an emulsion (1%) of thyme oil in water. Good and consistent control was generally achieved with the physical methods aerated steam, hot water and electron treatment. Aerated steam treatment was, apart from the thiram-containing chemical standard, the best single treatment, and its performance may at least partially be due to extensive pre-testing, resulting in dosages optimally adapted to the respective seed lot. In some of the experiments the effect of the hot water treatment, which was tested at a fixed, not specifically adapted dosage, was significantly improved when combined with a Pseudomonas sp. MF 416 or C. rosea IK726 treatment. The results are discussed in relation to the outcome of experiments in which the same seed treatment methods and agents were tested in other seed-borne vegetable pathosystems.
Journal of Plant Diseases and Protection | 2011
T. Amein; Sandra Ai Wright; Mariann Wikström; Eckhard Koch; Annegret Schmitt; Dietrich Stephan; Marga Jahn; G. Forsberg; S. Werner; Jan M. van der Wolf
Due to the lack of foliar fungicide use, the organic production of Brassica seeds free of Alternaria spp. is difficult. Therefore, effective seed treatments certified for use in organic farming are needed to eradicate or at least effectively reduce the seed-borne inoculum. We here report results of greenhouse and field experiments in which non-chemical seed treatments were tested for control of A. brassicicola on cabbage seeds naturally infested with the pathogen. In greenhouse experiments, significant improvements were obtained by seed treatment with some commercialised and experimental microbial biocontrol agents, an emulsion of thyme oil in water (0.1%) and by the tested physical seed treatments methods (i.e. hot water, aerated steam and electron seed treatment). Resistance inducers tended to increase the percentage of healthy plants, but the effects were statistically not significant. Generally the combination of physical treatments with the effective agents did not result in improved performance. Positive effects on crop establishment and yield by the same treatments were also observed in field tests. Overall the results indicate that several options for non-chemical control of A. brassicicola on Brassica seeds exist that are comparable in efficacy to the chemical standard Aatiram (active ingredient thiram) used in this study.
Microscopy and Microanalysis | 2007
Veroniek Saegeman; Rita Vos; Nilvanira D. Tebaldi; Jan M. van der Wolf; J.H.W. Bergervoet; Jan Verhaegen; D Lismont; B Verduyckt; Nadine Ectors
Human cadaveric skin allografts are used in the treatment of burns and can be preserved in glycerol at high concentrations. Previously, glycerol has been attributed some antimicrobial effect. In an experimental set-up, we aimed at investigating this effect of prolonged incubation of bacteria in 85% glycerol. Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus subtilis were incubated in 85% glycerol. The influence of duration of incubation and temperature on ultrastructure and viability were investigated. Unstressed cultures served as controls. Survival was studied after 24-36 h and 10 days incubation in 85% glycerol at 4 degrees C and 36 degrees C with transmission electron microscopy (TEM) and flow cytometry using viability stains indicating membrane damage (SYTO9, propidium iodide) or esterase activity (carboxyfluorescein diacetate). TEM clearly demonstrated variability in morphological changes of bacteria suggesting different mechanisms of damage. Viability stains supported these findings with faster declining viable cell populations in 85% glycerol at 36 degrees C compared with 4 degrees C. Both methods demonstrated that Gram-negative species were more susceptible than Gram-positive species. In conclusion, 85% glycerol may have some additional antimicrobial effect. Temperature is an important factor herein and Gram-negatives are most susceptible. The latter finding probably reflects the difference in cell wall composition between Gram-positive and Gram-negative bacteria.
European Journal of Plant Pathology | 2009
Robert Czajkowski; Grzegorz J. Grabe; Jan M. van der Wolf
European Journal of Plant Pathology | 2007
J. Peters; Wojciech Sledz; J.H.W. Bergervoet; Jan M. van der Wolf
European Journal of Plant Pathology | 2015
Robert Czajkowski; Jan M. van der Wolf; Aleksandra Królicka; Zofia Ozymko; Magdalena Narajczyk; Natalia Kaczynska; Ewa Lojkowska