Jan M. Wiener
Bournemouth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan M. Wiener.
The Journal of Neuroscience | 2007
Thomas Wolbers; Jan M. Wiener; Hanspeter A. Mallot; Christian Büchel
Path integration, the ability to sense self-motion for keeping track of changes in orientation and position, constitutes a fundamental mechanism of spatial navigation and a keystone for the development of cognitive maps. Whereas animal path integration is predominantly supported by the head-direction, grid, and place cell systems, the neural foundations are not well understood in humans. Here we used functional magnetic resonance imaging and a virtual rendition of a triangle completion paradigm to test whether human path integration recruits a cortical system similar to that of rodents and nonhuman primates. Participants traveled along two legs of a triangle before pointing toward the starting location. In accordance with animal models, stronger right hippocampal activation predicted more accurate updating of the starting location on a trial-by-trial basis. Moreover, between-subjects fluctuations in response consistency were negatively correlated with bilateral hippocampal and medial prefrontal activation, and bilateral recruitment of the human motion complex (hMT+) covaried with individual path integration capability. Given that these effects were absent in a perceptual control task, the present study provides the first evidence that visual path integration is related to the dynamic interplay of self-motion processing in hMT+, higher-level spatial processes in the hippocampus, and spatial working memory in medial prefrontal cortex.
Spatial Cognition and Computation | 2003
Jan M. Wiener; Hanspeter A. Mallot
Environments that are divided into regions lead to hierarchical encoding of space. Such memory structures are known to systematically distort estimates of distance and direction and affect spatial priming and memory recall. Here we present two navigation experiments in virtual environments that reveal an influence of environmental regions on human route planning and navigation behaviour. Following the hierarchical theories of spatial representations, it is argued that environmental regions are explicitly represented in spatial memory and that human route planning takes into account region-connectivity and is not based on place-connectivity alone. We also propose a fine-to-coarse planning heuristic that could account for the empirical data by planning in a representation that uses fine-space information for close locations and coarse-space information for distant locations simultaneously.
Spatial Cognition and Computation | 2009
Jan M. Wiener; Simon J. Büchner; Christoph Hölscher
Abstract Although the term “Wayfinding” has been defined by several authors, it subsumes a whole set of tasks that involve different cognitive processes, drawing on different cognitive components. Research on wayfinding has been conducted with different paradigms using a variety of wayfinding tasks. This makes it difficult to compare the results and implications of many studies. A systematic classification is needed in order to determine and investigate the cognitive processes and structural components of how humans solve wayfinding problems. Current classifications of wayfinding distinguish tasks on a rather coarse level or do not take the navigators knowledge, a key factor in wayfinding, into account. We present an extended taxonomy of wayfinding that distinguishes tasks by external constraints as well as by the level of spatial knowledge that is available to the navigator. The taxonomy will help to decrease ambiguity of wayfinding tasks and it will facilitate understanding of the differentiated demands a navigator faces when solving wayfinding problems.
Cognition | 2011
Christoph Hölscher; Thora Tenbrink; Jan M. Wiener
This paper disentangles cognitive and communicative factors influencing planning strategies in the everyday task of choosing a route to a familiar location. Describing the way for a stranger in town calls for fundamentally different cognitive processes and strategies than actually walking to a destination. In a series of experiments, this paper addresses route choices, planning processes, and description strategies in a familiar urban environment when asked to walk to a goal location, to describe a route for oneself, or to describe a route for an addressee. Results show systematic differences in the chosen routes with respect to efficiency, number of turns and streets, and street size. The analysis of verbal data provides consistent further insights concerning the nature of the underlying cognitive processes. Actual route navigation is predominantly direction-based and characterized by incremental perception-based optimization processes. In contrast, in-advance route descriptions draw on memory resources to a higher degree and accordingly rely more on salient graph-based structures, and they are affected by concerns of communicability. The results are consistent with the assumption that strategy choice follows a principle of cognitive economy that is highly adaptive to the degree of perceptual information available for the task.
The Journal of Neuroscience | 2013
Jan M. Wiener; Olivier de Condappa; Mathew A. Harris; Thomas Wolbers
Efficient spatial navigation requires not only accurate spatial knowledge but also the selection of appropriate strategies. Using a novel paradigm that allowed us to distinguish between beacon, associative cue, and place strategies, we investigated the effects of cognitive aging on the selection and adoption of navigation strategies in humans. Participants were required to rejoin a previously learned route encountered from an unfamiliar direction. Successful performance required the use of an allocentric place strategy, which was increasingly observed in young participants over six experimental sessions. In contrast, older participants, who were able to recall the route when approaching intersections from the same direction as during encoding, failed to use the correct place strategy when approaching intersections from novel directions. Instead, they continuously used a beacon strategy and showed no evidence of changing their behavior across the six sessions. Given that this bias was already apparent in the first experimental session, the inability to adopt the correct place strategy is not related to an inability to switch from a firmly established response strategy to an allocentric place strategy. Rather, and in line with previous research, age-related deficits in allocentric processing result in shifts in preferred navigation strategies and an overall bias for response strategies. The specific preference for a beacon strategy is discussed in the context of a possible dissociation between beacon-based and associative-cue-based response learning in the striatum, with the latter being more sensitive to age-related changes.
Frontiers in Human Neuroscience | 2014
Thomas Wolbers; Jan M. Wiener
Spatial navigation is a fascinating behavior that is essential for our everyday lives. It involves nearly all sensory systems, it requires numerous parallel computations, and it engages multiple memory systems. One of the key problems in this field pertains to the question of reference frames: spatial information such as direction or distance can be coded egocentrically—relative to an observer—or allocentrically—in a reference frame independent of the observer. While many studies have associated striatal and parietal circuits with egocentric coding and entorhinal/hippocampal circuits with allocentric coding, this strict dissociation is not in line with a growing body of experimental data. In this review, we discuss some of the problems that can arise when studying the neural mechanisms that are presumed to support different spatial reference frames. We argue that the scale of space in which a navigation task takes place plays a crucial role in determining the processes that are being recruited. This has important implications, particularly for the inferences that can be made from animal studies in small scale space about the neural mechanisms supporting human spatial navigation in large (environmental) spaces. Furthermore, we argue that many of the commonly used tasks to study spatial navigation and the underlying neuronal mechanisms involve different types of reference frames, which can complicate the interpretation of neurophysiological data.
Psychological Research-psychologische Forschung | 2009
Jan M. Wiener; N. N. Ehbauer; Hanspeter A. Mallot
For large numbers of targets, path planning is a complex and computationally expensive task. Humans, however, usually solve such tasks quickly and efficiently. We present experiments studying human path planning performance and the cognitive processes and heuristics involved. Twenty-five places were arranged on a regular grid in a large room. Participants were repeatedly asked to solve traveling salesman problems (TSP), i.e., to find the shortest closed loop connecting a start location with multiple target locations. In Experiment 1, we tested whether humans employed the nearest neighbor (NN) strategy when solving the TSP. Results showed that subjects outperform the NN-strategy, suggesting that it is not sufficient to explain human route planning behavior. As a second possible strategy we tested a hierarchical planning heuristic in Experiment 2, demonstrating that participants first plan a coarse route on the region level that is refined during navigation. To test for the relevance of spatial working memory (SWM) and spatial long-term memory (LTM) for planning performance and the planning heuristics applied, we varied the memory demands between conditions in Experiment 2. In one condition the target locations were directly marked, such that no memory was required; a second condition required participants to memorize the target locations during path planning (SWM); in a third condition, additionally, the locations of targets had to retrieved from LTM (SWM and LTM). Results showed that navigation performance decreased with increasing memory demands while the dependence on the hierarchical planning heuristic increased.
Psychological Research-psychologische Forschung | 2012
Jan M. Wiener; Christoph Hölscher; Simon J. Büchner; Lars Konieczny
A series of four experiments investigating gaze behavior and decision making in the context of wayfinding is reported. Participants were presented with screenshots of choice points taken in large virtual environments. Each screenshot depicted alternative path options. In Experiment 1, participants had to decide between them to find an object hidden in the environment. In Experiment 2, participants were first informed about which path option to take as if following a guided route. Subsequently, they were presented with the same images in random order and had to indicate which path option they chose during initial exposure. In Experiment 1, we demonstrate (1) that participants have a tendency to choose the path option that featured the longer line of sight, and (2) a robust gaze bias towards the eventually chosen path option. In Experiment 2, systematic differences in gaze behavior towards the alternative path options between encoding and decoding were observed. Based on data from Experiments 1 and 2 and two control experiments ensuring that fixation patterns were specific to the spatial tasks, we develop a tentative model of gaze behavior during wayfinding decision making suggesting that particular attention was paid to image areas depicting changes in the local geometry of the environments such as corners, openings, and occlusions. Together, the results suggest that gaze during a wayfinding tasks is directed toward, and can be predicted by, a subset of environmental features and that gaze bias effects are a general phenomenon of visual decision making.
Experimental Brain Research | 2011
Jan M. Wiener; Alain Berthoz; Thomas Wolbers
Path integration is a fundamental mechanism of spatial navigation. In non-human species, it is assumed to be an online process in which a homing vector is updated continuously during an outward journey. In contrast, human path integration has been conceptualized as a configural process in which travelers store working memory representations of path segments, with the computation of a homing vector only occurring when required. To resolve this apparent discrepancy, we tested whether humans can employ different path integration strategies in the same task. Using a triangle completion paradigm, participants were instructed either to continuously update the start position during locomotion (continuous strategy) or to remember the shape of the outbound path and to calculate home vectors on basis of this representation (configural strategy). While overall homing accuracy was superior in the configural condition, participants were quicker to respond during continuous updating, strongly suggesting that homing vectors were computed online. Corroborating these findings, we observed reliable differences in head orientation during the outbound path: when participants applied the continuous updating strategy, the head deviated significantly from straight ahead in direction of the start place, which can be interpreted as a continuous motor expression of the homing vector. Head orientation—a novel online measure for path integration—can thus inform about the underlying updating mechanism already during locomotion. In addition to demonstrating that humans can employ different cognitive strategies during path integration, our two-systems view helps to resolve recent controversies regarding the role of the medial temporal lobe in human path integration.
Environment and Planning B-planning & Design | 2008
G Franz; Jan M. Wiener
Human spatial behavior and experience cannot be investigated independently from the shape and configuration of environments. Therefore, comparative studies in architectural psychology and spatial cognition would clearly benefit from operationalizations of space that provide a common denominator for capturing its behavioral and psychologically relevant properties. This paper presents theoretical and methodological issues arising from the practical application of isovist-based graphs for the analysis of architectural spaces. Based on recent studies exploring the influence of spatial form and structure on behavior and experience in virtual environments, the following topics are discussed: (1) the derivation and empirical verification of meaningful descriptor variables on the basis of classic qualitative theories of environmental psychology relating behavior and experience to spatial properties; (2) methods to select reference points for the analysis of architectural spaces at a local level; furthermore, based on two experiments exploring the phenomenal conception of the spatial structure of architectural environments, formalized strategies for (3) the selection of reference points at a global level, and for (4), their integration into a sparse yet plausible comprehensive graph structure, are proposed. Taken together, a well formalized and psychologically oriented methodology for the efficient description of spatial properties of environments at the architectural scale level is outlined. This method appears useful for a wide range of applications, ranging from abstract architectural analysis over behavioral experiments to studies on mental representations in cognitive science.