Jan Mani
University of Bern
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Mani.
PLOS Pathogens | 2010
Daniel Nilsson; Kapila Gunasekera; Jan Mani; Magne Østerås; Laurent Farinelli; Loïc Baerlocher; Isabel Roditi; Torsten Ochsenreiter
Trans-splicing of leader sequences onto the 5′ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5′splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT). The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5′ splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/.
Plant Molecular Biology | 2008
Sylvain Aubry; Jan Mani; Stefan Hörtensteiner
Type C stay-green mutants are defined as being defective in the pathway of chlorophyll breakdown, which involves pheophorbide a oxygenase (PAO), required for loss of green color. By analyzing senescence parameters, such as protein degradation, expression of senescence-associated genes and loss of photosynthetic capacity, we demonstrate that JI2775, the green cotyledon (i) pea line used by Gregor Mendel to establish the law of genetics, is a true type C stay-green mutant. STAY-GREEN (SGR) had earlier been shown to map to the I locus. The defect in JI2775 is due to both reduced expression of SGR and loss of SGR protein function. Regulation of PAO through SGR had been proposed. By determining PAO protein abundance and activity, we show that PAO is unaffected in JI2775. Furthermore we show that pheophorbide a accumulation in the mutant is independent of PAO. When silencing SGR expression in Arabidopsispao1 mutant, both pheophorbide a accumulation and cell death phenotype, typical features of pao1, are lost. These results confirm that SGR function within the chlorophyll catabolic pathway is independent and upstream of PAO.
PLOS ONE | 2011
Jan Mani; Andreas Güttinger; Bernd Schimanski; Manfred Heller; Alvaro Acosta-Serrano; Pascale Pescher; Gerald F. Späth; Isabel Roditi
Trypanosoma brucei and related pathogens transcribe most genes as polycistronic arrays that are subsequently processed into monocistronic mRNAs. Expression is frequently regulated post-transcriptionally by cis-acting elements in the untranslated regions (UTRs). GPEET and EP procyclins are the major surface proteins of procyclic (insect midgut) forms of T. brucei. Three regulatory elements common to the 3′ UTRs of both mRNAs regulate mRNA turnover and translation. The glycerol-responsive element (GRE) is unique to the GPEET 3′ UTR and regulates its expression independently from EP. A synthetic RNA encompassing the GRE showed robust sequence-specific interactions with cytoplasmic proteins in electromobility shift assays. This, combined with column chromatography, led to the identification of 3 Alba-domain proteins. RNAi against Alba3 caused a growth phenotype and reduced the levels of Alba1 and Alba2 proteins, indicative of interactions between family members. Tandem-affinity purification and co-immunoprecipitation verified these interactions and also identified Alba4 in sub-stoichiometric amounts. Alba proteins are cytoplasmic and are recruited to starvation granules together with poly(A) RNA. Concomitant depletion of all four Alba proteins by RNAi specifically reduced translation of a reporter transcript flanked by the GPEET 3′ UTR. Pulldown of tagged Alba proteins confirmed interactions with poly(A) binding proteins, ribosomal protein P0 and, in the case of Alba3, the cap-binding protein eIF4E4. In addition, Alba2 and Alba3 partially cosediment with polyribosomes in sucrose gradients. Alba-domain proteins seem to have exhibited great functional plasticity in the course of evolution. First identified as DNA-binding proteins in Archaea, then in association with nuclear RNase MRP/P in yeast and mammalian cells, they were recently described as components of a translationally silent complex containing stage-regulated mRNAs in Plasmodium. Our results are also consistent with stage-specific regulation of translation in trypanosomes, but most likely in the context of initiation.
Molecular & Cellular Proteomics | 2013
Moritz Niemann; Sebastian Wiese; Jan Mani; Astrid Chanfon; Christopher B. Jackson; Christof Meisinger; Bettina Warscheid; André Schneider
Trypanosoma brucei is a unicellular parasite that causes devastating diseases in humans and animals. It diverged from most other eukaryotes very early in evolution and, as a consequence, has an unusual mitochondrial biology. Moreover, mitochondrial functions and morphology are highly regulated throughout the life cycle of the parasite. The outer mitochondrial membrane defines the boundary of the organelle. Its properties are therefore key for understanding how the cytosol and mitochondria communicate and how the organelle is integrated into the metabolism of the whole cell. We have purified the mitochondrial outer membrane of T. brucei and characterized its proteome using label-free quantitative mass spectrometry for protein abundance profiling in combination with statistical analysis. Our results show that the trypanosomal outer membrane proteome consists of 82 proteins, two-thirds of which have never been associated with mitochondria before. 40 proteins share homology with proteins of known functions. The function of 42 proteins, 33 of which are specific to trypanosomatids, remains unknown. 11 proteins are essential for the disease-causing bloodstream form of T. brucei and therefore may be exploited as novel drug targets. A comparison with the outer membrane proteome of yeast defines a set of 17 common proteins that are likely present in the mitochondrial outer membrane of all eukaryotes. Known factors involved in the regulation of mitochondrial morphology are virtually absent in T. brucei. Interestingly, RNAi-mediated ablation of three outer membrane proteins of unknown function resulted in a collapse of the network-like mitochondrion of procyclic cells and for the first time identified factors that control mitochondrial shape in T. brucei.
Nature Communications | 2015
Jan Mani; Silvia Franziska Desy; Moritz Niemann; Astrid Chanfon; Silke Oeljeklaus; Mascha Pusnik; Oliver G. Schmidt; Carolin Gerbeth; Chris Meisinger; Bettina Warscheid; André Schneider
Mitochondrial protein import is essential for all eukaryotes and mediated by hetero-oligomeric protein translocases thought to be conserved within all eukaryotes. We have identified and analysed the function and architecture of the non-conventional outer membrane (OM) protein translocase in the early diverging eukaryote Trypanosoma brucei. It consists of six subunits that show no obvious homology to translocase components of other species. Two subunits are import receptors that have a unique topology and unique protein domains and thus evolved independently of the prototype receptors Tom20 and Tom70. Our study suggests that protein import receptors were recruited to the core of the OM translocase after the divergence of the major eukaryotic supergroups. Moreover, it links the evolutionary history of mitochondrial protein import receptors to the origin of the eukaryotic supergroups.
Molecular Biology and Evolution | 2016
Jan Mani; Chris Meisinger; André Schneider
Mitochondria are essential for eukaryotic life and more than 95% of their proteins are imported as precursors from the cytosol. The targeting signals for this posttranslational import are conserved in all eukaryotes. However, this conservation does not hold true for the protein translocase of the mitochondrial outer membrane that serves as entry gate for essentially all precursor proteins. Only two of its subunits, Tom40 and Tom22, are conserved and thus likely were present in the last eukaryotic common ancestor. Tom7 is found in representatives of all supergroups except the Excavates. This suggests that it was added to the core of the translocase after the Excavates segregated from all other eukaryotes. A comparative analysis of the biochemically and functionally characterized outer membrane translocases of yeast, plants, and trypanosomes, which represent three eukaryotic supergroups, shows that the receptors that recognize the conserved import signals differ strongly between the different systems. They present a remarkable example of convergent evolution at the molecular level. The structural diversity of the functionally conserved import receptors therefore provides insight into the early evolutionary history of mitochondria.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Felix Schnarwiler; Moritz Niemann; Nicholas Doiron; Anke Harsman; Sandro Käser; Jan Mani; Astrid Chanfon; Caroline E. Dewar; Silke Oeljeklaus; Christopher B. Jackson; Mascha Pusnik; Oliver Schmidt; Chris Meisinger; Sebastian Hiller; Bettina Warscheid; Achim Schnaufer; Torsten Ochsenreiter; André Schneider
Significance During cell division mitochondria and their genomes need to be transmitted to the daughter cells. In the parasitic protozoa Trypansoma brucei we find a unique situation. It has a single mitochondrion with a single-unit genome that is physically connected to the flagellum. Here we identify the β-barrel mitochondrial outer membrane protein TAC40 that localizes to this connection. TAC40 is essential and defines a novel subclass of mitochondrial porins that are specialized in mitochondrial genome inheritance. A comparative analysis reveals a conserved concept of a mitochondrial DNA inheritance mechanism in trypanosomes and yeast that depends on a physical linkage between mitochondrial DNA and the cytoskeleton, which is organized around a β-barrel protein of the mitochondrial porin family. Mitochondria cannot form de novo but require mechanisms allowing their inheritance to daughter cells. In contrast to most other eukaryotes Trypanosoma brucei has a single mitochondrion whose single-unit genome is physically connected to the flagellum. Here we identify a β-barrel mitochondrial outer membrane protein, termed tripartite attachment complex 40 (TAC40), that localizes to this connection. TAC40 is essential for mitochondrial DNA inheritance and belongs to the mitochondrial porin protein family. However, it is not specifically related to any of the three subclasses of mitochondrial porins represented by the metabolite transporter voltage-dependent anion channel (VDAC), the protein translocator of the outer membrane 40 (TOM40), or the fungi-specific MDM10, a component of the endoplasmic reticulum–mitochondria encounter structure (ERMES). MDM10 and TAC40 mediate cellular architecture and participate in transmembrane complexes that are essential for mitochondrial DNA inheritance. In yeast MDM10, in the context of the ERMES, is postulated to connect the mitochondrial genomes to actin filaments, whereas in trypanosomes TAC40 mediates the linkage of the mitochondrial DNA to the basal body of the flagellum. However, TAC40 does not colocalize with trypanosomal orthologs of ERMES components and, unlike MDM10, it regulates neither mitochondrial morphology nor the assembly of the protein translocase. TAC40 therefore defines a novel subclass of mitochondrial porins that is distinct from VDAC, TOM40, and MDM10. However, whereas the architecture of the TAC40-containing complex in trypanosomes and the MDM10-containing ERMES in yeast is very different, both are organized around a β-barrel protein of the mitochondrial porin family that mediates a DNA–cytoskeleton linkage that is essential for mitochondrial DNA inheritance.
Molecular Microbiology | 2013
Marina Cristodero; Jan Mani; Silke Oeljeklaus; Lukas Aeberhard; Hassan Hashimi; David J. F. Ramrath; Julius Lukeš; Bettina Warscheid; André Schneider
Mitochondrial translation in the parasitic protozoan Trypanosoma brucei relies on imported eukaryotic‐type tRNAs as well as on bacterial‐type ribosomes that have the shortest known rRNAs. Here we have identified the mitochondrial translation elongation factors EF‐Tu, EF‐Ts, EF‐G1 and release factor RF1 of trypanosomatids and show that their ablation impairs growth and oxidative phosphorylation. In vivo labelling experiments and a SILAC‐based analysis of the global proteomic changes induced by EF‐Tu RNAi directly link EF‐Tu to mitochondrial translation. Moreover, EF‐Tu RNAi reveals downregulation of many nuclear encoded subunits of cytochrome oxidase as well as of components of the bc1‐complex, whereas most cytosolic ribosomal proteins were upregulated. Interestingly, T. brucei EF‐Tu has a 30‐amino‐acid‐long, highly charged subdomain, which is unique to trypanosomatids. A combination of RNAi and complementation experiments shows that this subdomain is essential for EF‐Tu function, but that it can be replaced by a similar sequence found in eukaryotic EF‐1a, the cytosolic counterpart of EF‐Tu. A recent cryo‐electron microscopy study revealed that trypanosomatid mitochondrial ribosomes have a unique intersubunit space that likely harbours the EF‐Tu binding site. These findings suggest that the trypanosomatid‐specific EF‐Tu subdomain serves as an adaption for binding to these unusual mitochondrial ribosomes.
Molecular Biology of the Cell | 2012
Mascha Pusnik; Jan Mani; Oliver Schmidt; Moritz Niemann; Silke Oeljeklaus; Felix Schnarwiler; Bettina Warscheid; Trevor Lithgow; Chris Meisinger; André Schneider
The mitochondrial outer membrane protein Tom40 is the general entry gate for imported proteins in essentially all eukaryotes. Trypanosomatids lack Tom40, however, and use instead a protein termed the archaic translocase of the outer mitochondrial membrane (ATOM). Here we report the discovery of pATOM36, a novel essential component of the trypanosomal outer membrane protein import system that interacts with ATOM. pATOM36 is not related to known Tom proteins from other organisms and mediates the import of matrix proteins. However, there is a group of precursor proteins whose import is independent of pATOM36. Domain-swapping experiments indicate that the N-terminal presequence-containing domain of the substrate proteins at least in part determines the dependence on pATOM36. Secondary structure profiling suggests that pATOM36 is composed largely of α-helices and its assembly into the outer membrane is independent of the sorting and assembly machinery complex. Taken together, these results show that pATOM36 is a novel component associated with the ATOM complex that promotes the import of a subpopulation of proteins into the mitochondrial matrix.
Nature Communications | 2017
Christian D. Peikert; Jan Mani; Marcel Morgenstern; Sandro Käser; Bettina Knapp; Christoph Wenger; Anke Harsman; Silke Oeljeklaus; André Schneider; Bettina Warscheid
Protein import into organelles is essential for all eukaryotes and facilitated by multi-protein translocation machineries. Analysing whether a protein is transported into an organelle is largely restricted to single constituents. This renders knowledge about imported proteins incomplete, limiting our understanding of organellar biogenesis and function. Here we introduce a method that enables charting an organelles importome. The approach relies on inducible RNAi-mediated knockdown of an essential subunit of a translocase to impair import and quantitative mass spectrometry. To highlight its potential, we established the mitochondrial importome of Trypanosoma brucei, comprising 1,120 proteins including 331 new candidates. Furthermore, the method allows for the identification of proteins with dual or multiple locations and the substrates of distinct protein import pathways. We demonstrate the specificity and versatility of this ImportOmics method by targeting import factors in mitochondria and glycosomes, which demonstrates its potential for globally studying protein import and inventories of organelles.