Jan Meiser
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Meiser.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Arne Tapfer; Martin Bech; Astrid Velroyen; Jan Meiser; Juergen Mohr; Marco Walter; Joachim Schulz; Bart Pauwels; Peter Bruyndonckx; Xuan Liu; Alexander Sasov; Franz Pfeiffer
To explore the future clinical potential of improved soft-tissue visibility with grating-based X-ray phase contrast (PC), we have developed a first preclinical computed tomography (CT) scanner featuring a rotating gantry. The main challenge in the transition from previous bench-top systems to a preclinical scanner are phase artifacts that are caused by minimal changes in the grating alignment during gantry rotation. In this paper, we present the first experimental results from the system together with an adaptive phase recovery method that corrects for these phase artifacts. Using this method, we show that the scanner can recover quantitatively accurate Hounsfield units in attenuation and phase. Moreover, we present a first tomography scan of biological tissue with complementary information in attenuation and phase contrast. The present study hence demonstrates the feasibility of grating-based phase contrast with a rotating gantry for the first time and paves the way for future in vivo studies on small animal disease models (in the mid-term future) and human diagnostics applications (in the long-term future).
INTERNATIONAL WORKSHOP ON X-RAY AND NEUTRON PHASE IMAGING WITH GRATINGS | 2012
J. Mohr; Thomas Grund; Danays Kunka; Johannes Kenntner; Juerg Leuthold; Jan Meiser; Joachim Schulz; Marco Walter
Differential phase contrast X-ray imaging (DPCI) has gained a lot of interest in the past years. It is based on X-ray grating interferometry and the image quality is strongly dependant on the grating quality. Periodic line and space structures with periods in the micron range are required for the source and absorption grating. In case of energies > 30 keV their height should be larger than 100 μm resulting in aspect ratios of more than 100. Deep X-ray lithography and gold electroforming (LIGA technology) is used to fabricate these challenging structures. After resist, design and process optimization gratings with 2.4 μm period have been electroformed up to 120 μm, Visibilities of up to 70% for 29 keV and up to 20% for 52 keV have been achieved for monochromatic synchrotron light. Structures with larger periods could be manufactured up to 200 μm; further increase of the height and the gratings quality is possible yielding to high performance gratings also for high energies.
Scientific Reports | 2016
Lorenz Birnbacher; Marian Willner; Astrid Velroyen; Mathias Marschner; Alexander Hipp; Jan Meiser; Frieder J. Koch; Tobias J. Schröter; Danays Kunka; Jürgen Mohr; Franz Pfeiffer; Julia Herzen
The possibility to perform high-sensitivity X-ray phase-contrast imaging with laboratory grating-based phase-contrast computed tomography (gbPC-CT) setups is of great interest for a broad range of high-resolution biomedical applications. However, achieving high sensitivity with laboratory gbPC-CT setups still poses a challenge because several factors such as the reduced flux, the polychromaticity of the spectrum, and the limited coherence of the X-ray source reduce the performance of laboratory gbPC-CT in comparison to gbPC-CT at synchrotron facilities. In this work, we present our laboratory X-ray Talbot-Lau interferometry setup operating at 40 kVp and describe how we achieve the high sensitivity yet unrivalled by any other laboratory X-ray phase-contrast technique. We provide the angular sensitivity expressed via the minimum resolvable refraction angle both in theory and experiment, and compare our data with other differential phase-contrast setups. Furthermore, we show that the good stability of our high-sensitivity setup allows for tomographic scans, by which even the electron density can be retrieved quantitatively as has been demonstrated in several preclinical studies.
Review of Scientific Instruments | 2017
Tobias J. Schröter; Frieder J. Koch; Pascal Meyer; Danays Kunka; Jan Meiser; Konstantin Willer; Lukas B. Gromann; Fabio De Marco; Julia Herzen; Peter B. Noël; Andre Yaroshenko; Andreas Hofmann; Franz Pfeiffer; Jürgen Mohr
X-ray grating-based interferometry promises unique new diagnostic possibilities in medical imaging and materials analysis. To transfer this method from scientific laboratories or small-animal applications to clinical radiography applications, compact setups with a large field of view (FoV) are required. Currently the FoV is limited by the grating area, which is restricted due to the complex manufacturing process. One possibility to increase the FoV is tiling individual grating tiles to create one large area grating mounted on a carrier substrate. We investigate theoretically the accuracy needed for a tiling process in all degrees of freedom by applying a simulation approach. We show how the resulting precision requirements can be met using a custom-built frame for exact positioning. Precise alignment is achieved by comparing the fringe patterns of two neighboring grating tiles in a grating interferometer. With this method, the FoV can be extended to practically any desired length in one dimension. First results of a phase-contrast scanning setup with a full FoV of 384 mm × 24 mm show the suitability of this method.
AIP Conference Proceedings : 21st International Congress on X-Ray Optics and Microanalysis, ICXOM21; Campinas; Brazil; 5 September 2011 - 9 September 2011 | 2012
Johannes Kenntner; Venera Altapova; Thomas Grund; Franz Josef Pantenburg; Jan Meiser; Tilo Baumbach; Juergen Mohr
In recent years, X-ray imaging based on the differential phase contrast gained more and more attention to be used in X-ray imaging. Among other techniques like crystal-based diffraction and propagation methods, the grating based Talbot interferometry offers an approach measuring phase modulations of X-rays while passing low absorbing objects. The Talbot interferometer yields for highly efficient X-ray imaging signals for hard X-rays with energies above 10 keV. One factor with high impact on the imaging performance of such grating interferometers is the gratings quality. We introduce a fabrication process allowing both, the fabrication of phase modulating and analyzer gratings with high aspect ratios, up to 100. Structural deviations from the optimal geometry of the gratings are investigated and their influence on the obtained image quality is discussed.
Optics Express | 2014
Alexander Hipp; Marian Willner; Julia Herzen; Sigrid Auweter; Michael Chabior; Jan Meiser; Klaus Achterhold; Jürgen Mohr; Franz Pfeiffer
Grating interferometry has been successfully adapted at standard X-ray tubes and is a promising candidate for a broad use of phase-contrast imaging in medical diagnostics or industrial testing. The achievable image quality using this technique is mainly dependent on the interferometer performance with the interferometric visibility as crucial parameter. The presented study deals with experimental investigations of the spectral dependence of the visibility in order to understand the interaction between the single contributing energies. Especially for the choice which type of setup has to be preferred using a polychromatic source, this knowledge is highly relevant. Our results affirm previous findings from theoretical investigations but also show that measurements of the spectral contributions to the visibility are necessary to fully characterize and optimize a grating interferometer and cannot be replaced by only relying on simulated data up to now.
Optics Express | 2014
Andre Yaroshenko; Martin Bech; Guillaume Potdevin; Andreas Malecki; Thomas Biernath; Johannes Wolf; Arne Tapfer; Markus Schüttler; Jan Meiser; Danays Kunka; Maximilian Amberger; Juergen Mohr; Franz Pfeiffer
X-ray imaging using a Talbot-Lau interferometer, consisting of three binary gratings, is a well-established approach to acquire x-ray phase-contrast and dark-field images with a polychromatic source. However, challenges in the production of high aspect ratio gratings limit the construction of a compact setup for high x-ray energies. In this study we consider the use of phase gratings with triangular-shaped structures in an x-ray interferometer and show that such gratings can yield high visibilities for significantly shorter propagation distances than conventional gratings with binary structures. The findings are supported by simulation and experimental results for both cases of a monochromatic and a polychromatic source.
EPL | 2014
Jian Fu; Thomas Biernath; Marian Willner; Maximilian Amberger; Jan Meiser; Danays Kunka; Jürgen Mohr; Julia Herzen; Martin Bech; Franz Pfeiffer
We report on an x-ray cone-beam differential phase-contrast computed laminography (DPC-CL) method for tomographic reconstruction of thin and lamellar objects. We describe the specific scan geometry of DPC-CL, which consists of a Talbot-Lau grating interferometer and a lab-based x-ray tube source, and derive a filtered back-projection (FBP) reconstruction algorithm. The experimental results of a flat sphere phantom and a piece of ham demonstrate the validity of the proposed technique. The existing DPC-CL methods are based on synchrotron sources and the parallel-beam geometry. In contrast, our approach adopts a more accessible x-ray tube source and a cone-beam geometry. Therefore it significantly widens the application range of phase-contrast laminography, particularly in practical laboratory settings, beyond applications at large-scale synchrotron facilities.
Proceedings of SPIE | 2013
Thomas Thüring; S. Hämmerle; S. Weiss; J. Nüesch; Jan Meiser; Jürgen Mohr; Christian David; Marco Stampanoni
Today’s commercial X-ray micro computed tomography (CT) specimen systems are based on microfocus sources, 2D pixel array cameras and short source-to-detector distances (i.e. cone-beam configurations). High resolution is achieved by means of geometric magnification. The further development of such devices to acquire phase and scattering contrast images can dramatically enhance their range of applications. Due to the compact geometries, which imply a highly diverging beam, the gratings must be curved to maintain highest imaging performance over a large field of view. We report about the implementation of extremely compact Talbot and Talbot- Lau type grating interferometers which are compatible to the geometry of typical micro CT systems. For the analytical description of the imaging system, formulas are presented describing the dependency of the sensitivity on geometric parameters, camera and source parameters. Further, the imaging pipeline consisting of the data acquisition protocol, radiographic phase retrieval and tomographic image reconstruction is illustrated. The reported methods open the way for an immediate integration of phase and scattering contrast imaging on table top X-ray micro CT scanners.
Review of Scientific Instruments | 2015
Frieder J. Koch; Tobias J. Schröter; Danays Kunka; Pascal Meyer; Jan Meiser; A. Faisal; M. I. Khalil; Lorenz Birnbacher; M. Viermetz; Marco Walter; Joachim Schulz; Franz Pfeiffer; Jürgen Mohr
Grating based X-ray phase contrast imaging is on the verge of being applied in clinical settings. To achieve this goal, compact setups with high sensitivity and dose efficiency are necessary. Both can be increased by eliminating unwanted absorption in the beam path, which is mainly due to the grating substrates. Fabrication of gratings via deep X-ray lithography can address this issue by replacing the commonly used silicon substrate with materials with lower X-ray absorption that fulfill certain boundary conditions. Gratings were produced on both graphite and polymer substrates without compromising on structure quality. These gratings were tested in a three-grating setup with a source operated at 40 kVp and lead to an increase in the detector photon count rate of almost a factor of 4 compared to a set of gratings on silicon substrates. As the visibility was hardly affected, this corresponds to a significant increase in sensitivity and therefore dose efficiency.