Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan-Michael A. Klapproth is active.

Publication


Featured researches published by Jan-Michael A. Klapproth.


The FASEB Journal | 2007

Prohibitin protects against oxidative stress in intestinal epithelial cells

Arianne L. Theiss; Richard D. Idell; Shanthi Srinivasan; Jan-Michael A. Klapproth; Dean P. Jones; Didier Merlin; Shanthi V. Sitaraman

Prohibitin (PHB) is an evolutionarily conserved and ubiquitously expressed protein whose expression or function in intestinal diseases is not known. In this study, we examined the expression and role of PHB in oxidative stress associated with inflammatory bowel disease. Our results show that PHB primarily localizes to the mitochondria in intestinal epithelial cells. Its expression is down‐regulated during active human Crohns disease, experimental colitis in vivo, and oxidative stress in vitro. PHB overexpression increases the expression of glutathione‐S‐transferase π and protects from oxidant‐induced depletion of glutathione. Finally, PHB overexpression decreases accumulation of reactive oxygen metabolites, as well as increased permeability induced by oxidative stress in intestinal epithelial cells. Together, these results suggest that PHB constitutes a previously unrecognized cellular defense against oxidant injury. Thus, strategies to modulate PHB levels may constitute a novel therapeutic approach for intestinal inflammatory diseases, wherein oxidative stress plays a critical role in tissue injury and inflammation. Theiss, A. L., Idell, R. D., Srinivasan, S., Klapproth, J.‐M., Jones, D. P., Merlin, D., Sitaraman, S. V. Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J. 21, 197–206 (2007)


PLOS ONE | 2012

Development of a unique small molecule modulator of CXCR4.

Zhongxing Liang; Weiqiang Zhan; Aizhi Zhu; Younghyoun Yoon; Songbai Lin; Maiko Sasaki; Jan-Michael A. Klapproth; Hua Yang; Hans E. Grossniklaus; Jianguo Xu; Mauricio Rojas; Ronald J. Voll; Mark M. Goodman; Richard F. Arrendale; Jin Liu; C. Chris Yun; James P. Snyder; Dennis C. Liotta; Hyunsuk Shim

Background Metastasis, the spread and growth of tumor cells to distant organ sites, represents the most devastating attribute and plays a major role in the morbidity and mortality of cancer. Inflammation is crucial for malignant tumor transformation and survival. Thus, blocking inflammation is expected to serve as an effective cancer treatment. Among anti-inflammation therapies, chemokine modulation is now beginning to emerge from the pipeline. CXC chemokine receptor-4 (CXCR4) and its ligand stromal cell-derived factor-1 (CXCL12) interaction and the resulting cell signaling cascade have emerged as highly relevant targets since they play pleiotropic roles in metastatic progression. The unique function of CXCR4 is to promote the homing of tumor cells to their microenvironment at the distant organ sites. Methodology/Principal Findings We describe the actions of N,N′-(1,4-phenylenebis(methylene))dipyrimidin-2-amine (designated MSX-122), a novel small molecule and partial CXCR4 antagonist with properties quite unlike that of any other reported CXCR4 antagonists, which was prepared in a single chemical step using a reductive amination reaction. Its specificity toward CXCR4 was tested in a binding affinity assay and a ligand competition assay using 18F-labeled MSX-122. The potency of the compound was determined in two functional assays, Matrigel invasion assay and cAMP modulation. The therapeutic potential of MSX-122 was evaluated in three different murine models for inflammation including an experimental colitis, carrageenan induced paw edema, and bleomycin induced lung fibrosis and three different animal models for metastasis including breast cancer micrometastasis in lung, head and neck cancer metastasis in lung, and uveal melanoma micrometastasis in liver in which CXCR4 was reported to play crucial roles. Conclusions/Significance We developed a novel small molecule, MSX-122, that is a partial CXCR4 antagonist without mobilizing stem cells, which can be safer for long-term blockade of metastasis than other reported CXCR4 antagonists.


Journal of Parenteral and Enteral Nutrition | 2007

Are Plasma Citrulline and Glutamine Biomarkers of Intestinal Absorptive Function in Patients With Short Bowel Syndrome

Menghua Luo; Concepción Fernández-Estívariz; Amita K. Manatunga; Niloofar Bazargan; Li H. Gu; Dean P. Jones; Jan-Michael A. Klapproth; Shanthi V. Sitaraman; Lorraine M. Leader; John R. Galloway; Thomas R. Ziegler

Sensitive biomarkers for intestinal absorptive function would be clinically useful in short bowel syndrome (SBS). Citrulline (Cit) is a product of the metabolism of glutamine (Gln) and derived amino acids by enterocytes. Cit is produced almost exclusively by the gut, which is also a major site of Gln metabolism. The goals of this study were to examine whether plasma Cit and Gln concentrations are biomarkers of residual small intestinal length and nutrient absorptive functions in adult SBS patients followed prospectively. We studied 24 stable adults with severe SBS receiving chronic parenteral nutrition (PN) in a double-blind, randomized trial of individualized dietary modification +/- recombinant human growth hormone (GH). During a baseline week, intestinal absorption studies (% absorption of fluid, kcal, nitrogen, fat, carbohydrate, sodium, phosphorus, and magnesium) were performed and concomitant plasma Cit and Gln concentrations determined. Individualized dietary modification and treatment with subcutaneous injection of placebo (n = 9) or GH (0.1 mg/kg daily x 21 days, then 3 times/week; n = 15) were then begun. PN weaning was initiated after week 4 and continued as tolerated for 24 weeks. Repeat plasma amino acid determination and nutrient absorption studies were performed at weeks 4 and 12. Residual small bowel length at baseline was positively correlated with baseline plasma Cit (r = 0.467; p = .028). However, no significant correlations between absolute Cit or Gln concentrations and the percent absorption of nutrient substrates at any time point were observed. Similarly, no correlation between the change in Cit or GLN concentration and the change in % nutrient absorption was observed (baseline vs weeks 4 and 12, respectively). By weeks 12 and 24, 7 and 13 subjects were weaned completely from PN, respectively. However, baseline plasma Cit or Gln did not predict PN weaning at these time points. We concluded that plasma Cit (but not Gln) concentrations appeared to be an indicator of small intestinal length in adult SBS. However, neither plasma Cit nor Gln was a biomarker for intestinal absorptive function in this cohort of patients with SBS.


Molecular Biology of the Cell | 2009

Prohibitin Inhibits Tumor Necrosis Factor alpha–induced Nuclear Factor-kappa B Nuclear Translocation via the Novel Mechanism of Decreasing Importin α3 Expression

Arianne L. Theiss; Aaron K. Jenkins; Ngozi I. Okoro; Jan-Michael A. Klapproth; Didier Merlin; Shanthi V. Sitaraman

Expression of prohibitin 1 (PHB), a multifunctional protein in the cell, is decreased during inflammatory bowel disease (IBD). Little is known regarding the regulation and role of PHB during intestinal inflammation. We examined the effect of tumor necrosis factor alpha (TNF-alpha), a cytokine that plays a central role in the pathogenesis of IBD, on PHB expression and the effect of sustained PHB expression on TNF-alpha activation of nuclear factor-kappa B (NF-kappaB) and epithelial barrier dysfunction, two hallmarks of intestinal inflammation. We show that TNF-alpha decreased PHB protein and mRNA abundance in intestinal epithelial cells in vitro and in colon mucosa in vivo. Sustained expression of prohibitin in intestinal epithelial cells in vitro and in vivo (prohibitin transgenic mice, PHB TG) resulted in a marked decrease in TNF-alpha-induced nuclear translocation of the NF-kappaB protein p65, NF-kappaB/DNA binding, and NF-kappaB-mediated transcriptional activation despite robust IkappaB-alpha phosphorylation and degradation and increased cytosolic p65. Cells overexpressing PHB were protected from TNF-alpha-induced increased epithelial permeability. Expression of importin alpha3, a protein involved in p50/p65 nuclear import, was decreased in cells overexpressing PHB and in colon mucosa of PHB TG mice. Restoration of importin alpha3 levels sustained NF-kappaB activation by TNF-alpha during PHB transfection. These results suggest that PHB inhibits NF-kappaB nuclear translocation via a novel mechanism involving alteration of importin alpha3 levels. TNF-alpha decreases PHB expression in intestinal epithelial cells and restoration of PHB expression in these cells can protect against the deleterious effects of TNF-alpha and NF-kappaB on barrier function.


Laboratory Investigation | 2006

hPepT1 mediates bacterial tripeptide fMLP uptake in human monocytes

Laetitia Charrier; Adel Driss; Yutao Yan; Vivienne Nduati; Jan-Michael A. Klapproth; Shanthi V. Sitaraman; Didier Merlin

Here, we examined hPepT1 expression in the monocytic cell line, KG-1. Reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that hPepT1 is expressed in KG-1 cells, while cDNA cloning and direct sequencing confirmed the sequence of KG-1 hPepT1 (accession number, AY634368). Immunoblotting of cell lysates from KG-1 cells or macrophages isolated from human peripheral blood revealed a ∼100 kDa immunoreactive band mainly present in the membrane fraction. Uptake experiments showed that the transport of 20 μM radiolabeled Gly-Sarcosine ([14C]Gly-Sar) in KG-1 cells was Na+, Cl− dependent and disodium 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS)-sensitive. In addition, hPepT1 activity was likely to be coupled to a Na+/H+ exchanger, as evidenced by the fact that [14C]Gly-Sar uptake was not affected by the absence of Na+ when cells were incubated at low pH (5.2). Interestingly, hPepT1-mediated transport was reduced in KG-1 cells incubated at low pH as it was also observed in nonpolarized Caco2-BBE cells. This pattern of pH-dependence is due to a disruption of the driving force of hPepT1-mediated transport events. This was supported by our finding that nonpolarized cells, Caco2-BBE cells and KG-1 cells, have an increased permeability to H+ when compared to polarized Caco2-BBE cells. Finally, we showed that hPepT1 is responsible for transporting fMLP into undifferentiated and differentiated (macrophage-like) KG-1 cells. Together, these results show that hPepT1 is expressed in nonpolarized immune cells, such as macrophages, where the transporter functions best at the physiological pH 7.2. Furthermore, we provide evidence for hPepT1-mediated fMLP transport, which might constitute a novel immune cell activation pathway during intestinal inflammation.


Journal of Signal Transduction | 2012

The Role of Bacteria in the Pathogenesis of Ulcerative Colitis

Maiko Sasaki; Jan-Michael A. Klapproth

Factors implicated in the pathophysiology of ulcerative colitis (UC) are an abnormal immune response, defect in intestinal epithelial barrier function, and gut microbiota. Currently, it is unclear whether specific bacterial strains are responsible for the induction of intestinal inflammation, but increased bacterial tissue invasion has been described in affected UC patients. Further, a quantitative and qualitative microbial imbalance in UC, defined as dysbiosis, has been characterized by an increase in Rhodococcus spp., Shigella spp., and Escherichia spp., but a decrease in certain Bacteroides spp.. More specifically, Campylobacter spp., Enterobacteriae, and enterohepatic Helicobacter were more prevalent in tissue sample from UC patients subjected to molecular detection methods, but not controls. In addition, serologic testing identified Fusobacterim varium as a potential contributor to the intestinal inflammation in UC. Interestingly, in-situ hybridization studies have shown anti-inflammatory Lactobacillus spp. and Pediococcus spp. were absent in samples from subjects affected by UC. Therefore, dysbiosis is a factor in the pathogenesis of UC.


Inflammatory Bowel Diseases | 2010

Bacterial induction of proinflammatory cytokines in inflammatory bowel disease.

Jan-Michael A. Klapproth; Maiko Sasaki

&NA; It has become increasingly clear that inflammatory bowel disease (IBD) develops on the background of genetic defects in the host, conveying an increased susceptibility to an environmental antigen or antigens. The environmental factor implicated in the pathophysiology of gut inflammation, which is undergoing increased scrutiny, is the intestinal flora. The intestinal flora as a whole and specific bacteria and their products have been found to trigger cytokine expression in various cell types. Consistently, multiple bacterial strains were found to induce tumor necrosis factor alpha (TNF‐&agr;) and interleukin‐8 (IL‐8) in macrophage and epithelial cell systems, respectively, in particular in Crohns disease. Interestingly, various cell types from patients with IBD display an increased susceptibility to specific bacterial products, including flagellin, pili, and lipopolysaccharides. It remains to be determined whether additional effector proteins regulate cytokine expression and the aberrant mucosal immune response in IBD. (Inflamm Bowel Dis 2010)


Journal of Parenteral and Enteral Nutrition | 2006

Growth Hormone Favorably Affects Bone Turnover and Bone Mineral Density in Patients With Short Bowel Syndrome Undergoing Intestinal Rehabilitation

Vin Tangpricha; Menghua Luo; Concepción Fernández-Estívariz; Li H. Gu; Niloofar Bazargan; Jan-Michael A. Klapproth; Shanthi V. Sitaraman; John R. Galloway; Lorraine M. Leader; Thomas R. Ziegler

BACKGROUND Patients with short bowel syndrome (SBS) have a high prevalence of metabolic bone disease due to nutrient malabsorption and potential effects of parenteral nutrition (PN). Human growth hormone (hGH) has been shown in some studies to have anabolic effects on bone, but hGH effects on bone in patients with SBS are unknown. METHODS Adults with PN-dependent SBS underwent a 7-day period of baseline studies while receiving usual oral diet and PN and then began receiving modified diets designed to improve nutrient absorption and daily oral calcium/vitamin D supplements (1500 mg elemental calcium and 600 IU vitamin D, respectively). Subjects were randomized to receive in a double-blind manner either subcutaneous (sc) saline placebo as the control or hGH (0.1 mg/kg/d for 3 weeks, then 0.1 mg/kg 3 days a week for 8 subsequent weeks). Open-label hGH was given from week 13 to week 24 in subjects who required PN after completion of the 12-week double-blind phase. Markers of bone turnover (serum osteocalcin and urinary N-telopeptide [NTX]), vitamin D nutriture (serum calcium, 25-hydroxyvitamin D [25-OH D] and parathyroid hormone [PTH] concentrations), and intestinal calcium absorption were measured at baseline and at weeks 4 and 12. Dual x-ray absorptiometry (DXA) of the hip and spine was performed to determine bone mineral density (BMD) at baseline and weeks 12 and 24. RESULTS The majority of subjects in each group exhibited evidence of vitamin D deficiency at baseline (25-OH D levels<30 ng/mL; 78% and 79% of control and hGH-treated subjects, respectively). Subjects treated with hGH demonstrated a significant increase from baseline in serum osteocalcin levels at 12 weeks (+62%; p<.05). The levels of NTX were increased over time in the hGH-treated group; however, this did not reach statistical significance. Both NTX and osteocalcin remained unchanged in control subjects. BMD of the spine and total hip was unchanged in subjects treated with placebo or hGH at 24 weeks. However, femoral neck BMD was slightly but significantly decreased in the placebo group at this time point but remained unchanged from baseline in the hGH-treated subjects. CONCLUSIONS hGH therapy significantly increased markers of bone turnover during the initial 3 months of therapy and stabilized femoral neck bone mass over a 6-month period in patients with severe SBS undergoing intestinal rehabilitation.


Toxins | 2010

The Role of Lymphostatin/EHEC Factor for Adherence-1 in the Pathogenesis of Gram Negative Infection

Jan-Michael A. Klapproth

Lymphostatin/EHEC factor for adherence-1 is a novel large toxin represented in various Gram negative bacteria, highly associated with the development of infectious diarrhea and hemolytic uremic syndrome. In vitro and in vivo experiments identified lymphostatin/EFA-1 as a toxin with a central role in the pathogenesis of Gram negative bacteria, responsible for bacterial adhesion, intestinal colonization, immunosuppression, and disruption of gut epithelial barrier function.


American Journal of Pathology | 2017

Lysophosphatidic acid receptor 1 is important for intestinal epithelial barrier function and susceptibility to colitis

Songbai Lin; Yiran Han; Kayte Jenkin; Sei-Jung Lee; Maiko Sasaki; Jan-Michael A. Klapproth; Peijian He; C. Chris Yun

Intestinal epithelial cells form a barrier that is critical in protecting the host from the hostile luminal environment. Previously, we showed that lysophosphatidic acid (LPA) receptor 1 regulates proliferation of intestinal epithelial cells, such that the absence of LPA1 mitigates the epithelial wound healing process. This study provides evidence that LPA1 is important for the maintenance of epithelial barrier integrity. The epithelial permeability, determined by fluorescently labeled dextran flux and transepithelial resistance, is increased in the intestine of mice with global deletion of Lpar1, Lpar1-/- (Lpa1-/-). Serum liposaccharide level and bacteria loads in the intestinal mucosa and peripheral organs were elevated in Lpa1-/- mice. Decreased claudin-4, caudin-7, and E-cadherin expression in Lpa1-/- mice further suggested defective apical junction integrity in these mice. Regulation of LPA1 expression in Caco-2 cells modulated epithelial permeability and the expression levels of junctional proteins. The increased epithelial permeability in Lpa1-/- mice correlated with increased susceptibility to an experimental model of colitis. This resulted in more severe inflammation and increased mortality compared with control mice. Treatment of Caco-2 cells with tumor necrosis factor-α and interferon-γ significantly increased paracellular permeability, which was blocked by cotreatment with LPA, but not LPA1 knockdown cells. Similarly, orally given LPA blocked tumor necrosis factor-mediated intestinal barrier defect in mice. LPA1 plays a significant role in maintenance of epithelial barrier in the intestine via regulation of apical junction integrity.

Collaboration


Dive into the Jan-Michael A. Klapproth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Merlin

Georgia State University

View shared research outputs
Top Co-Authors

Avatar

Arianne L. Theiss

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asma Nusrat

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorraine M. Leader

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge