Jan Mojzis
University of Pavol Jozef Šafárik
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Mojzis.
Pharmacological Research | 2008
Jan Mojzis; Lenka Varinská; Gabriela Mojžišová; I. Kostova; Ladislav Mirossay
Angiogenesis, the development of new blood vessels from the existing vasculature, is essential in normal developmental processes. Uncontrolled angiogenesis is a major contributor to a number of disease states such as inflammatory disorders, obesity, asthma, diabetes, cirrhosis, multiple sclerosis, endometriosis, AIDS, bacterial infections and autoimmune disease. It is also considered a key step in tumour growth, invasion, and metastasis. Angiogenesis is required for proper nourishment and removal of metabolic wastes from tumour sites. Therefore, modulation of angiogenesis is considered as therapeutic strategies of great importance for human health. Numerous bioactive plant compounds are recently tested for their antiangiogenic potential. Among the most frequently studied are polyphenols present in fruits and vegetables. Plant polyphenols inhibit angiogenesis and metastasis through regulation of multiple signalling pathways. Specifically, flavonoids and chalcones regulate expression of VEGF, matrix metalloproteinases (MMPs), EGFR and inhibit NFkappaB, PI3-K/Akt, ERK1/2 signalling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of flavonoids and chalcones and examines underlying mechanisms.
Bioelectrochemistry | 2002
J. Sabo; Ladislav Mirossay; L. Horovcak; M. Sarissky; A. Miroššay; Jan Mojzis
A number of structures with magnetic moments exists in living organisms that may be oriented by magnetic field. While most experimental efforts belong to the area of effects induced by weak and extremely low-frequency electromagnetic fields, we attempt to give an attention to the biological effects of strong static magnetic fields. The influence of static magnetic field (SMF) on metabolic activity of cells was examined. The metabolic activity retardation is observed in human leukemic cell line HL-60 exposed to 1-T SMF for 72 h. The retardation effect was observed as well as in the presence of the mixture of the antineoplastic drugs 5 fluorouracil, cisplatin, doxorubicin and vincristine.
International Journal of Molecular Sciences | 2015
Lenka Varinská; Peter Gál; Gabriela Mojžišová; Ladislav Mirossay; Jan Mojzis
Epidemiological studies have revealed that high consumption of soy products is associated with low incidences of hormone-dependent cancers, including breast and prostate cancer. Soybeans contain large amounts of isoflavones, such as the genistein and daidzain. Previously, it has been demonstrated that genistein, one of the predominant soy isoflavones, can inhibit several steps involved in carcinogenesis. It is suggested that genistein possesses pleiotropic molecular mechanisms of action including inhibition of tyrosine kinases, DNA topoisomerase II, 5α-reductase, galectin-induced G2/M arrest, protein histidine kinase, and cyclin-dependent kinases, modulation of different signaling pathways associated with the growth of cancer cells (e.g., NF-κB, Akt, MAPK), etc. Moreover, genistein is also a potent inhibitor of angiogenesis. Uncontrolled angiogenesis is considered as a key step in cancer growth, invasion, and metastasis. Genistein was found to inhibit angiogenesis through regulation of multiple pathways, such as regulation of VEGF, MMPs, EGFR expressions and NF-κB, PI3-K/Akt, ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This review focuses on the antiangiogenic properties of soy isoflavonoids and examines their possible underlying mechanisms.
European Journal of Pharmacology | 2012
Lenka Varinská; Michiel H. van Wijhe; Mirella Belleri; Stefania Mitola; Pál Perjési; Marco Presta; Pieter Koolwijk; Lenka Ivanova; Jan Mojzis
Angiogenesis, the growth of new blood vessels, is necessary for cancerous tumors to keep growing and spreading. Suppression of abnormal angiogenesis may provide therapeutic strategies for the treatment of angiogenesis-dependent disorders. In the present study, we describe the in vitro and in vivo anti-angiogenic activities of the flavonoid precursor 4-hydroxychalcone (Q797). This chalcone (22μg/ml) suppressed several steps of angiogenesis, including endothelial cell proliferation, migration and tube formation without showing any signs of cytotoxicity. Moreover, we found a selective effect on activated endothelial cells, in particular with resting endothelial cells and the human epithelial tumor cell lines (HeLa, MCF-7, A549). In addition, Q797 was able to modulate both vascular endothelial growth factor (VEGF)- and basic fibroblast growth factor (FGF)- induced phosphorylation of extracellular signal-regulated kinase (ERK)-1/-2 and Akt kinase. It did not influence the nuclear translocation of p65 subunit of the nuclear factor-κB (NF-κB) when human endothelial cells were stimulated with tumor necrosis factor (TNF)-α. Taken together this indicates that the Q797-mediated inhibition of in vitro angiogenic features of endothelial cells is most likely caused by suppression of growth factor pathways. The potent inhibitory effect of Q797 on bFGF-driven neovascularization was also demonstrated in vivo using the chick chorioallantoic membrane (CAM) assay. In summary, this chalcone could serve as a new leading structure in the discovery of new potent synthetic angiogenesis inhibitors.
Phytotherapy Research | 2010
Lucia Sabová; Martina Pilátová; Katarina Szilagyi; Rastislav Sabo; Jan Mojzis
Mistletoe preparations are frequently used by cancer patients because of their ability to stimulate the immunity and to improve the quality of life. Moreover mistletoe and its active substances (especially lectins) possess cytotoxic effect on various cancer cell lines. However, only little is known about its interaction with anticancer drugs. Therefore the cytotoxic and apoptosis‐inducing effects of aqueous mistletoe extract (VA) and its interaction with doxorubicin (DOXO) were investigated in Jurkat cells.
Molecules | 2014
Martin Kello; David Drutovic; Martina Chripkova; Martina Pilátová; Mariana Budovská; Lucia Kuliková; Peter Urdzik; Jan Mojzis
This study was designed to examine the in vitro antiproliferative effect of brassinin and its derivatives on human cancer cell lines. Among seven tested compounds, homobrassinin (K1; N-[2-(indol-3-yl)ethyl]-S-methyldithiocarbamate) exhibited the most potent activity with IC50 = 8.0 μM in human colorectal Caco2 cells and was selected for further studies. The flow cytometric analysis revealed a K1-induced increase in the G2/M phase associated with dysregulation of α-tubulin, α1-tubulin and β5-tubulin expression. These findings suggest that the inhibitory effect of K1 can be mediated via inhibition of microtubule formation. Furthermore, simultaneously with G2/M arrest, K1 also increased population of cells with sub-G1 DNA content which is considered to be a marker of apoptotic cell death. Apoptosis was also confirmed by annexin V/PI double staining, DNA fragmentation assay and chromatin condensation assay. The apoptosis was associated with the loss of mitochondrial membrane potential (MMP), caspase-3 activation as well as intracellular reactive oxygen species (ROS) production. Moreover, the antioxidant Trolox blocked ROS production, changes in MMP and decreased K1 cytotoxicity, which confirmed the important role of ROS in cell apoptosis. Taken together, our data demonstrate that K1 induces ROS-dependent apoptosis in Caco2 cells and provide the rationale for further in vivo anticancer investigation.
Phytotherapy Research | 2009
Gabriela Mojžišová; Marek Šarišský; Ladislav Mirossay; Peter Martinka; Jan Mojzis
Daunorubicin (DNR) is one of the most important antitumor agents belonging to the anthracycline group. However, its use is seriously limited by the development of cardiac toxicity. The present study was designed to investigate the effects of quercetin, pycnogenol and naringenin on daunorubicin‐induced cytoxicity in H9c2 cells.
Molecules | 2016
Martina Chripkova; Frantisek Zigo; Jan Mojzis
Indole phytoalexins from crucifers have been shown to exhibit significant anti-cancer, chemopreventive, and antiproliferative activity. Phytoalexins are natural low molecular antimicrobial compounds that are synthesized and accumulated in plants after their exposure to pathogenic microorganisms. Most interestingly, crucifers appear to be the only plant family producing sulfur-containing indole phytoalexins. The mechanisms underlying its anti-cancer properties are unknown. Isolation from cruciferous plants does not provide sufficient quantities of indole phytoalexins and, for biological screening, they are usually obtainable through synthesis. Understanding the molecular mechanism of the action of these substances and their structure-activity relationships is quite important in the development of new analogs with a more favorable profile of biological activities. In this review, we present the key features of indole phytoalexins, mainly their antiproliferative ativities.
Life Sciences | 2016
Martin Kello; David Drutovic; Martina Pilátová; Vierka Tischlerova; Pál Perjési; Jan Mojzis
AIMS Chalcones, naturally occurring open-chain polyphenols abundant in plants, have demonstrated antiproliferative activity in several cancer cell lines. In the present study, the potential anticancer activity of two synthetic analogues named Ch1 and Ch2 in colon cancer cell line was investigated. MAIN METHODS Antiproliferative activities of both synthetic analogues were assessed by Growth Inhibition Assay (MTT) and xCELLigence cell analysis. Apoptosis was assessed by annexin V/PI staining (early stage) or by DNA fragmentation (final stage). To study the cell death mechanism induced by tested substances, we assessed a series of assays including measurements of the caspase 3 activity, membrane mitochondrial potential (MMP) changes, reactive oxygen species (ROS) production by flow cytometry and expression of important apoptosis-related genes by realtime PCR. KEY FINDINGS We found concentration and time-dependent cytotoxicity, inhibition of proliferation of Caco-2 cells after Ch1 and Ch2 treatment in parallel with G2/M phase cell cycle arrest and increased cell proportion in subG0/G1 population with annexin V positivity. We demonstrated that both Ch1 and Ch2 induced caspase-dependent cell death associated with increased ROS production, suppressed Bcl-2 and Bcl-xL and enhanced Bax expression. Treatment of Ch1 also suppressed α-, α1- and β5-tubulins, on the other hand Ch2 only suppressed α-tubulin expression. SIGNIFICANCE Presented chalcones induce apoptosis by intrinsic pathways, and therefore may be an interesting strategy for cancer therapy.
Medical Science Monitor | 2011
Silvia Rybárová; Janka Vecanová; Ingrid Hodorová; Jozef Mihalik; Martina Cizmarikova; Jan Mojzis; Peter Solár; Marián Benicky; Marian Adamkov; Ladislav Mirossay
Summary Background This study aimed to examine the relationship between XRCC1, p53 and MDR1 protein, along with polymorphisms of their genes and their prognostic values in breast cancer. The following clinical and pathological parameters were evaluated: histopathological type of tumor, grade, stage, Her2/neu expression, ER, PR positivity and involvement of regional lymph nodes. Material/Methods Expression of proteins was determined in 39 samples of breast cancer by immunohistochemistry. Nucleotide polymorphisms were analyzed by PCR-RFLP. For statistical analysis, chi-square test (Yates), Fisher’s exact test, and correlation test were used to analyze the data. Results The highest protein expression was immunohistochemically found in MDR1 protein, with 54% of samples testing positive. In addition, the evaluation of MDR1 expression revealed higher positive immunoreactivity in lobular (LIC) and other types of tumor in comparison to ductal (DIC) type. The expression of p53 and XRCC1 protein was equal, but lower compared to MDR1, both testing positive in 36% of all tissue samples. Comparison of XRCC1 protein and histopathological type of tumor revealed that DIC and LIC types were mostly XRCC1-negative, while other types, papillary and mucinous were more likely to be XRCC1-positive. Interestingly, when evaluating LIC samples separately, a negative correlation between the Her2/neu and expression of XRCC1 was detected. Apparently, all Her2/neu-positive samples were XRCC1-negative (6/86%). The correlation test indicated a negative correlation between Her2/neu-positive samples and XRCC1-negative specimens (r=1, p<0.05). Statistical analysis did not reveal a correlation of p53 expression with clinical and pathological parameters. Similarly, no statistically significant difference was found between the tested polymorphisms and protein expression. Conclusions We did not find statistically significant correlation between tested polymorphisms and their protein expression.