Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan O. Korbel is active.

Publication


Featured researches published by Jan O. Korbel.


Nature | 2012

Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma

Jeremy Schwartzentruber; Andrey Korshunov; Xiao Yang Liu; David T. W. Jones; Elke Pfaff; Karine Jacob; Dominik Sturm; Adam M. Fontebasso; Dong Anh Khuong Quang; Martje Tönjes; Volker Hovestadt; Steffen Albrecht; Marcel Kool; André Nantel; Carolin Konermann; Anders M. Lindroth; Natalie Jäger; Tobias Rausch; Marina Ryzhova; Jan O. Korbel; Thomas Hielscher; Péter Hauser; Miklós Garami; Almos Klekner; László Bognár; Martin Ebinger; Martin U. Schuhmann; Wolfram Scheurlen; Arnulf Pekrun; Michael C. Frühwald

Glioblastoma multiforme (GBM) is a lethal brain tumour in adults and children. However, DNA copy number and gene expression signatures indicate differences between adult and paediatric cases. To explore the genetic events underlying this distinction, we sequenced the exomes of 48 paediatric GBM samples. Somatic mutations in the H3.3-ATRX-DAXX chromatin remodelling pathway were identified in 44% of tumours (21/48). Recurrent mutations in H3F3A, which encodes the replication-independent histone 3 variant H3.3, were observed in 31% of tumours, and led to amino acid substitutions at two critical positions within the histone tail (K27M, G34R/G34V) involved in key regulatory post-translational modifications. Mutations in ATRX (α-thalassaemia/mental retardation syndrome X-linked) and DAXX (death-domain associated protein), encoding two subunits of a chromatin remodelling complex required for H3.3 incorporation at pericentric heterochromatin and telomeres, were identified in 31% of samples overall, and in 100% of tumours harbouring a G34R or G34V H3.3 mutation. Somatic TP53 mutations were identified in 54% of all cases, and in 86% of samples with H3F3A and/or ATRX mutations. Screening of a large cohort of gliomas of various grades and histologies (n = 784) showed H3F3A mutations to be specific to GBM and highly prevalent in children and young adults. Furthermore, the presence of H3F3A/ATRX-DAXX/TP53 mutations was strongly associated with alternative lengthening of telomeres and specific gene expression profiles. This is, to our knowledge, the first report to highlight recurrent mutations in a regulatory histone in humans, and our data suggest that defects of the chromatin architecture underlie paediatric and young adult GBM pathogenesis.


Nature | 2011

Mapping copy number variation by population-scale genome sequencing

Ryan E. Mills; Klaudia Walter; Chip Stewart; Robert E. Handsaker; Ken Chen; Can Alkan; Alexej Abyzov; Seungtai Yoon; Kai Ye; R. Keira Cheetham; Asif T. Chinwalla; Donald F. Conrad; Yutao Fu; Fabian Grubert; Iman Hajirasouliha; Fereydoun Hormozdiari; Lilia M. Iakoucheva; Zamin Iqbal; Shuli Kang; Jeffrey M. Kidd; Miriam K. Konkel; Joshua M. Korn; Ekta Khurana; Deniz Kural; Hugo Y. K. Lam; Jing Leng; Ruiqiang Li; Yingrui Li; Chang-Yun Lin; Ruibang Luo

Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.


Nature | 2012

Dissecting the genomic complexity underlying medulloblastoma

David T. W. Jones; Natalie Jäger; Marcel Kool; Thomas Zichner; Barbara Hutter; Marc Sultan; Yoon-Jae Cho; Trevor J. Pugh; Volker Hovestadt; Adrian M. Stütz; Tobias Rausch; Hans-Jörg Warnatz; Marina Ryzhova; Sebastian Bender; Dominik Sturm; Sabrina Pleier; Huriye Cin; Elke Pfaff; Laura Sieber; Andrea Wittmann; Marc Remke; Hendrik Witt; Sonja Hutter; Theophilos Tzaridis; Joachim Weischenfeldt; Benjamin Raeder; Meryem Avci; Vyacheslav Amstislavskiy; Marc Zapatka; Ursula Weber

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour–normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


Nature | 2015

An integrated map of structural variation in 2,504 human genomes

Peter H. Sudmant; Tobias Rausch; Eugene J. Gardner; Robert E. Handsaker; Alexej Abyzov; John Huddleston; Zhang Y; Kai Ye; Goo Jun; Markus His Yang Fritz; Miriam K. Konkel; Ankit Malhotra; Adrian M. Stütz; Xinghua Shi; Francesco Paolo Casale; Jieming Chen; Fereydoun Hormozdiari; Gargi Dayama; Ken Chen; Maika Malig; Mark Chaisson; Klaudia Walter; Sascha Meiers; Seva Kashin; Erik Garrison; Adam Auton; Hugo Y. K. Lam; Xinmeng Jasmine Mu; Can Alkan; Danny Antaki

Structural variants are implicated in numerous diseases and make up the majority of varying nucleotides among human genomes. Here we describe an integrated set of eight structural variant classes comprising both balanced and unbalanced variants, which we constructed using short-read DNA sequencing data and statistically phased onto haplotype blocks in 26 human populations. Analysing this set, we identify numerous gene-intersecting structural variants exhibiting population stratification and describe naturally occurring homozygous gene knockouts that suggest the dispensability of a variety of human genes. We demonstrate that structural variants are enriched on haplotypes identified by genome-wide association studies and exhibit enrichment for expression quantitative trait loci. Additionally, we uncover appreciable levels of structural variant complexity at different scales, including genic loci subject to clusters of repeated rearrangement and complex structural variants with multiple breakpoints likely to have formed through individual mutational events. Our catalogue will enhance future studies into structural variant demography, functional impact and disease association.


Bioinformatics | 2012

DELLY: structural variant discovery by integrated paired-end and split-read analysis

Tobias Rausch; Thomas Zichner; Andreas Schlattl; Adrian M. Stütz; Vladimir Benes; Jan O. Korbel

Motivation: The discovery of genomic structural variants (SVs) at high sensitivity and specificity is an essential requirement for characterizing naturally occurring variation and for understanding pathological somatic rearrangements in personal genome sequencing data. Of particular interest are integrated methods that accurately identify simple and complex rearrangements in heterogeneous sequencing datasets at single-nucleotide resolution, as an optimal basis for investigating the formation mechanisms and functional consequences of SVs. Results: We have developed an SV discovery method, called DELLY, that integrates short insert paired-ends, long-range mate-pairs and split-read alignments to accurately delineate genomic rearrangements at single-nucleotide resolution. DELLY is suitable for detecting copy-number variable deletion and tandem duplication events as well as balanced rearrangements such as inversions or reciprocal translocations. DELLY, thus, enables to ascertain the full spectrum of genomic rearrangements, including complex events. On simulated data, DELLY compares favorably to other SV prediction methods across a wide range of sequencing parameters. On real data, DELLY reliably uncovers SVs from the 1000 Genomes Project and cancer genomes, and validation experiments of randomly selected deletion loci show a high specificity. Availability: DELLY is available at www.korbel.embl.de/software.html Contact: [email protected]


Science | 2010

Variation in Transcription Factor Binding Among Humans

Maya Kasowski; Fabian Grubert; Christopher Heffelfinger; Manoj Hariharan; Akwasi Asabere; Sebastian M. Waszak; Lukas Habegger; Joel Rozowsky; Minyi Shi; Alexander E. Urban; Miyoung Hong; Konrad J. Karczewski; Wolfgang Huber; Sherman M. Weissman; Mark Gerstein; Jan O. Korbel; Michael Snyder

Like Father, Like Mother, Like Child Transcriptional regulation is mediated by chromatin structure, which may affect the binding of transcription factors, but the extent of how individual-to-individual genetic variation affects such regulation is not well understood. Kasowski et al. (p. 232, published online 18 March) investigated the binding of two transcription factors across the genomes of human individuals and one chimpanzee. Transcription factor binding was associated with genomic features such as nucleotide variation, insertions and deletions, and copy number variation. Thus, genomic sequence variation affects transcription factor binding and may explain expression difference among individuals. McDaniell et al. (p. 235, published online 18 March) provide a genome-wide catalog of variation in chromatin and transcription factor binding in two parent-child trios of European and African ancestry. Up to 10% of active chromatin binding sites were specific to a set of individuals and were often inherited. Furthermore, variation in active chromatin sites showed heritable allele-specific correlation with variation in gene expression. Transcription factor binding sites vary among individuals and are correlated with differences in expression. Differences in gene expression may play a major role in speciation and phenotypic diversity. We examined genome-wide differences in transcription factor (TF) binding in several humans and a single chimpanzee by using chromatin immunoprecipitation followed by sequencing. The binding sites of RNA polymerase II (PolII) and a key regulator of immune responses, nuclear factor κB (p65), were mapped in 10 lymphoblastoid cell lines, and 25 and 7.5% of the respective binding regions were found to differ between individuals. Binding differences were frequently associated with single-nucleotide polymorphisms and genomic structural variants, and these differences were often correlated with differences in gene expression, suggesting functional consequences of binding variation. Furthermore, comparing PolII binding between humans and chimpanzee suggests extensive divergence in TF binding. Our results indicate that many differences in individuals and species occur at the level of TF binding, and they provide insight into the genetic events responsible for these differences.


Nature Genetics | 2013

Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma

David T. W. Jones; Barbara Hutter; Natalie Jäger; Andrey Korshunov; Marcel Kool; Hans-Jörg Warnatz; Thomas Zichner; Sally R. Lambert; Marina Ryzhova; Dong Anh Khuong Quang; Adam M. Fontebasso; Adrian M. Stütz; Sonja Hutter; Marc Zuckermann; Dominik Sturm; Jan Gronych; Bärbel Lasitschka; Sabine Schmidt; Huriye Şeker-Cin; Hendrik Witt; Marc Sultan; Meryem Ralser; Paul A. Northcott; Volker Hovestadt; Sebastian Bender; Elke Pfaff; Sebastian Stark; Damien Faury; Jeremy Schwartzentruber; Jacek Majewski

Pilocytic astrocytoma, the most common childhood brain tumor, is typically associated with mitogen-activated protein kinase (MAPK) pathway alterations. Surgically inaccessible midline tumors are therapeutically challenging, showing sustained tendency for progression and often becoming a chronic disease with substantial morbidities. Here we describe whole-genome sequencing of 96 pilocytic astrocytomas, with matched RNA sequencing (n = 73), conducted by the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. We identified recurrent activating mutations in FGFR1 and PTPN11 and new NTRK2 fusion genes in non-cerebellar tumors. New BRAF-activating changes were also observed. MAPK pathway alterations affected all tumors analyzed, with no other significant mutations identified, indicating that pilocytic astrocytoma is predominantly a single-pathway disease. Notably, we identified the same FGFR1 mutations in a subset of H3F3A-mutated pediatric glioblastoma with additional alterations in the NF1 gene. Our findings thus identify new potential therapeutic targets in distinct subsets of pilocytic astrocytoma and childhood glioblastoma.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Nature | 2014

Epigenomic alterations define lethal CIMP-positive ependymomas of infancy.

Stephen C. Mack; Hendrik Witt; Rosario M. Piro; Lei Gu; Scott Zuyderduyn; A. M. Stütz; Xiaosong Wang; Marco Gallo; Livia Garzia; Kory Zayne; Xiaoyang Zhang; Vijay Ramaswamy; Natalie Jäger; David T. W. Jones; Martin Sill; Trevor J. Pugh; M. Ryzhova; Khalida Wani; David Shih; Renee Head; Marc Remke; S. D. Bailey; Thomas Zichner; Claudia C. Faria; Mark Barszczyk; Sebastian Stark; Huriye Seker-Cin; Sonja Hutter; Pascal Johann; Sebastian Bender

Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies

Jan O. Korbel; Tal Tirosh-Wagner; Alexander E. Urban; Xiao Ning Chen; Maya Kasowski; Li Dai; Fabian Grubert; Chandra Erdman; Michael C. Gao; Ken Lange; Eric M. Sobel; Gillian M. Barlow; Arthur S. Aylsworth; Nancy J. Carpenter; Robin D. Clark; Monika Y. Cohen; Eric Doran; Tzipora C. Falik-Zaccai; Susan O. Lewin; Ira T. Lott; Barbara McGillivray; John B. Moeschler; Mark J. Pettenati; Siegfried M. Pueschel; Kathleen W. Rao; Lisa G. Shaffer; Mordechai Shohat; Alexander J. Van Riper; Dorothy Warburton; Sherman M. Weissman

Down syndrome (DS), or trisomy 21, is a common disorder associated with several complex clinical phenotypes. Although several hypotheses have been put forward, it is unclear as to whether particular gene loci on chromosome 21 (HSA21) are sufficient to cause DS and its associated features. Here we present a high-resolution genetic map of DS phenotypes based on an analysis of 30 subjects carrying rare segmental trisomies of various regions of HSA21. By using state-of-the-art genomics technologies we mapped segmental trisomies at exon-level resolution and identified discrete regions of 1.8–16.3 Mb likely to be involved in the development of 8 DS phenotypes, 4 of which are congenital malformations, including acute megakaryocytic leukemia, transient myeloproliferative disorder, Hirschsprung disease, duodenal stenosis, imperforate anus, severe mental retardation, DS-Alzheimer Disease, and DS-specific congenital heart disease (DSCHD). Our DS-phenotypic maps located DSCHD to a <2-Mb interval. Furthermore, the map enabled us to present evidence against the necessary involvement of other loci as well as specific hypotheses that have been put forward in relation to the etiology of DS—i.e., the presence of a single DS consensus region and the sufficiency of DSCR1 and DYRK1A, or APP, in causing several severe DS phenotypes. Our study demonstrates the value of combining advanced genomics with cohorts of rare patients for studying DS, a prototype for the role of copy-number variation in complex disease.

Collaboration


Dive into the Jan O. Korbel's collaboration.

Top Co-Authors

Avatar

Adrian M. Stütz

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Tobias Rausch

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Zichner

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David T. W. Jones

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Marcel Kool

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Volker Hovestadt

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge