Jan P. Nicolay
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan P. Nicolay.
Nature Medicine | 2007
Philipp A. Lang; M. Schenck; Jan P. Nicolay; Jan U. Becker; Daniela S. Kempe; Adrian Lupescu; Saisudha Koka; Kerstin Eisele; Barbara A. Klarl; H. Rübben; Kurt Werner Schmid; Klaus Mann; Sibylle Hildenbrand; Harald Hefter; Stephan M. Huber; Thomas Wieder; A. Erhardt; Dieter Häussinger; Erich Gulbins; Florian Lang
Wilson disease is caused by accumulation of Cu2+ in cells, which results in liver cirrhosis and, occasionally, anemia. Here, we show that Cu2+ triggers hepatocyte apoptosis through activation of acid sphingomyelinase (Asm) and release of ceramide. Genetic deficiency or pharmacological inhibition of Asm prevented Cu2+-induced hepatocyte apoptosis and protected rats, genetically prone to develop Wilson disease, from acute hepatocyte death, liver failure and early death. Cu2+ induced the secretion of activated Asm from leukocytes, leading to ceramide release in and phosphatidylserine exposure on erythrocytes, events also prevented by inhibition of Asm. Phosphatidylserine exposure resulted in immediate clearance of affected erythrocytes from the blood in mice. Accordingly, individuals with Wilson disease showed elevated plasma levels of Asm, and displayed a constitutive increase of ceramide- and phosphatidylserine-positive erythrocytes. Our data suggest a previously unidentified mechanism for liver cirrhosis and anemia in Wilson disease.
Cellular Physiology and Biochemistry | 2006
Jan P. Nicolay; Juliane Schneider; Olivier M. Niemoeller; Ferruh Artunc; Manuel Portero-Otin; George M. Haik; Paul J. Thornalley; Erwin Schleicher; Thomas Wieder; Florian Lang
Diabetes increases the percentage of circulating erythrocytes exposing phosphatidylserine (PS) at the cell surface. PS-exposing erythrocytes are recognized, bound, engulfed and degraded by macrophages. Thus, PS exposure, a feature of suicidal erythrocyte death or eryptosis, accelerates clearance of affected erythrocytes from circulating blood. Moreover, PS-exposing erythrocytes bind to the vascular wall thus interfering with microcirculation. The present study explored mechanisms involved in the triggering of PS exposure by methylgloxal, an extra- and intracellular metabolite which is enhanced in diabetes. PS exposure, cell size and cytosolic Ca2+-activity after methylglyoxal treatment were measured by FACS analysis of annexin V binding, forward scatter and Fluo-3-fluorescence, respectively, and it was shown that the treatment significantly enhanced the percentage of PS-exposing erythrocytes at concentrations (0.3 µM) encountered in diabetic patients. Surprisingly, methylglyoxal did not significantly increase cytosolic Ca2+ concentration, and at concentrations up to 3 µM, did not decrease the forward scatter. Instead, exposure to methylglyoxal inhibited glycolysis thus decreasing ATP and GSH concentrations. In conclusion, methylglyoxal impairs energy production and anti-oxidative defense, effects contributing to the enhanced PS exposure of circulating erythrocytes and eventually resulting in anemia and deranged microcirculation.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Michael Föller; Susanne Feil; Kamran Ghoreschi; Saisudha Koka; Andrea Gerling; Martin Thunemann; Franz Hofmann; Beat Schuler; Johannes Vogel; Bernd J. Pichler; Ravi S. Kasinathan; Jan P. Nicolay; Stephan M. Huber; Florian Lang; Robert Feil
To explore the functional significance of cGMP-dependent protein kinase type I (cGKI) in the regulation of erythrocyte survival, gene-targeted mice lacking cGKI were compared with their control littermates. By the age of 10 weeks, cGKI-deficient mice exhibited pronounced anemia and splenomegaly. Compared with control mice, the cGKI mutants had significantly lower red blood cell count, packed cell volume, and hemoglobin concentration. Anemia was associated with a higher reticulocyte number and an increase of plasma erythropoietin concentration. The spleens of cGKI mutant mice were massively enlarged and contained a higher fraction of Ter119+ erythroid cells, whereas the relative proportion of leukocyte subpopulations was not changed. The Ter119+ cGKI-deficient splenocytes showed a marked increase in annexin V binding, pointing to phosphatidylserine (PS) exposure at the outer membrane leaflet, a hallmark of suicidal erythrocyte death or eryptosis. Compared with control erythrocytes, cGKI-deficient erythrocytes exhibited in vitro a higher cytosolic Ca2+ concentration, a known trigger of eryptosis, and showed increased PS exposure, which was paralleled by a faster clearance in vivo. Together, these results identify a role of cGKI as mediator of erythrocyte survival and extend the emerging concept that cGMP/cGKI signaling has an antiapoptotic/prosurvival function in a number of cell types in vivo.
Cellular Physiology and Biochemistry | 2007
Juliane Schneider; Jan P. Nicolay; Michael Föller; Thomas Wieder; Florian Lang
Hallmarks of apoptosis include cell shrinkage, which is at least partially due to cellular K+ loss. The decline of cellular K+ concentration has been suggested to participate in the triggering of apoptosis. Suicidal erythrocyte death or eryptosis is triggered by increased cytosolic Ca2+ activity leading to activation of Ca2+-sensitive K+ channels with subsequent cellular K+ loss and cell shrinkage, and to Ca2+-sensitive scambling of the cell membrane with subsequent phosphatidylserine (PS) exposure at the cell surface. Phosphatidylserine exposing erythrocytes are recognized by macrophages, engulfed, degraded and thus cleared from circulating blood. The present study explored whether cellular loss of K+ and/or cell shrinkage actively participate in the triggering of cell membrane phospholipid scrambling. Cellular K+ loss was achieved by treatment of human erythrocytes with the K+ ionophore valinomycin (1 nM) at different extracellular K+ concentrations (5-125 mM) and osmolarities (300-550m Osm). Cell volume was estimated from forward scatter and PS exposure from annexin V binding in FACS analysis. Treatment with 1 nM valinomycin indeed decreased forward scatter and increased annexin V binding. The effect was significantly blunted in the presence of staurosporine (1 µM). Increase of extracellular K+ concentration gradually blunted the decrease of forward scatter but inhibited annexin V binding only at extracellular K+ concentrations ??75 mM. An increase of extracellular osmolarity (+150 mM or 250 mM sucrose) reversed the protective effect of 75 mM KCl during valinomycin treatment. A correlation between forward scatter and annexin binding at different osmolarities and K+ concentrations suggests that the cellular K+ content determines the rate of suicidal erythrocyte death primarily through its influence on cell volume.
Cellular Physiology and Biochemistry | 2008
Saisudha Koka; Camelia Lang; Olivier M. Niemoeller; Krishna M. Boini; Jan P. Nicolay; Stephan M. Huber; Florian Lang
Accelerated suicidal death or eryptosis of infected erythrocytes may delay development of parasitemia in malaria. Eryptosis is inhibited by nitric oxide (NO). The present study has been performed to explore, whether inhibition of NO synthase by L-NAME modifies the course of malaria. We show here that L-NAME (>10 µM) increased phosphatidylserine exposure of Plasmodium falciparum infected human erythrocytes, an effect significantly more marked than in noninfected human erythrocytes. We further show that parasitemia in Plasmodium berghei infected mice was significantly decreased (from 50% to 18% of circulating erythrocytes 20 days after infection) by addition of 1 mg/ml L-NAME to the drinking water. According to CFSE labelling L-NAME treatment accelerated the clearance of both, noninfected and infected, erythrocytes from circulating blood, but did not significantly extend the life span of infected animals. In conclusion, treatment with L-NAME shortens the life span of circulating erythrocytes and thus delays development of parasitemia during malaria.
European Journal of Pharmacology | 2008
Michael Föller; Corinna Geiger; Hasan Mahmud; Jan P. Nicolay; Florian Lang
Amantadine is an effective drug for treatment of both, Parkinsons disease and viral infections. Side effects of amantadine include anemia, which may limit its therapeutic use. The cause of amantatine induced anemia is ill defined. At least in theory, the anemia could partially result from suicidal erythrocyte death or eryptosis, which accelerates the clearance of circulating erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Triggers of erythrocyte membrane scrambling include an increase of cytosolic Ca2+ concentration ([Ca2+]i) resulting from activation of Ca2+-permeable cation channels. The present study has been performed to test for an effect of amantadine on eryptosis. Erythrocytes from healthy volunteers were exposed to amantadine and annexin V binding (disclosing phosphatidylserine exposure), forward scatter (reflecting cell volume), and Fluo3-dependent fluorescence (reflecting [Ca2+]i) were determined by flow cytometry. Exposure of erythrocytes to amantadine (> or =0.2 microg/ml) increased [Ca2+]i and triggered annexin V binding, and increased forward scatter. The effect on annexin V binding was virtually abolished in the absence of extracellular Ca2+. The present observations disclose mechanisms presumably contributing to amantadine induced anemia.
Journal of Psychopharmacology | 2010
Jan P. Nicolay; Sabine Gatz; Florian Lang; Undine E. Lang
Lithium (Li+), an effective drug for treatment of bipolar disorders, is known to alter several Ca2+ transporting systems. Increased cellular Ca2+ has in turn been shown to stimulate eryptosis, the suicidal death of erythrocytes. Eryptosis is characterised by exposure of phosphatidylserine (PS) at the erythrocyte surface and by cell shrinkage. The present experiments explored whether Li+ influences eryptosis. In erythrocytes from healthy volunteers, cytosolic Ca2+ activity (Fluo-3 fluorescence), cell volume (forward scatter) and PS exposure (annexin V binding) were determined by fluorescence-activated cell sorting analysis. Exposure to Li+ (≥1 mM) did not significantly modify forward scatter but significantly increased cytosolic Ca2+ activity (within 3 h) and annexin binding (within 48 h). The effect was paralleled by increase of cellular adenosine triphosphate concentration. Glucose depletion (24 h) strongly increased PS exposure, an effect significantly enhanced in the presence of Li+ (≥1 mM). In conclusion, Li+ triggers suicidal erythrocyte death, an effect at least partially due to increase of cytosolic Ca2+ activity.
Kidney & Blood Pressure Research | 2014
Martina Feger; Sobuj Mia; Tatsiana Pakladok; Jan P. Nicolay; Ioana Alesutan; Stefan Schneider; Jakob Voelkl; Florian Lang
Background/Aims: Shiga toxin 2 may trigger classical hemolytic uremic syndrome (HUS) eventually leading to renal failure. Klotho, a transmembrane protein, protease and hormone mainly expressed in kidney is involved in the regulation of renal phosphate excretion and also retains renal protective effects. Renal failure is associated with renal depletion of klotho. The present study explored the influence of Shiga toxin 2 on renal klotho expression. Methods: Mice were injected with either solvent or Shiga toxin 2 and urinary flow rate and phosphate excretion were determined in metabolic cages. Renal transcript levels were measured by quantitative RT-PCR and renal protein abundance by Western blotting. Plasma concentrations of 1,25(OH)2D3 and FGF23 were determined by ELISA and plasma phosphate and urea concentrations by photometry. Results: Shiga toxin 2 treatment was followed by increase of plasma urea concentration, urinary flow rate and renal phosphate excretion but not of plasma phosphate concentration. Shiga toxin 2 treatment strongly decreased klotho mRNA expression and klotho protein abundance in renal tissue. Shiga toxin 2 treatment further increased tumor necrosis factor (TnfE) mRNA levels, as well as protein abundance of phosphorylated p38 MAPK in renal tissue. The treatment significantly increased renal Cyp27b1 and decreased renal Cyp24a1 mRNA levels without significantly altering plasma 1,25(OH)2D3 levels. Shiga toxin 2 treatment was further followed by increase of plasma FGF23 concentrations. Conclusion: Shiga toxin 2 treatment stimulated TnfE transcription, down-regulated renal klotho expression and increased FGF23 formation, effects presumably contributing to renal tissue injury. i 2015 S. Karger AG, Basel
Journal of Molecular Medicine | 2006
Philipp A. Lang; Ortraud Beringer; Jan P. Nicolay; Oliver Amon; Daniela S. Kempe; Tobias Hermle; Philipp Attanasio; Ahmad Akel; Richard Schäfer; Björn Friedrich; Teut Risler; Matthias Baur; Christoph J. Olbricht; Lothar Bernd Zimmerhackl; Peter F. Zipfel; Thomas Wieder; Florian Lang
Cellular Physiology and Biochemistry | 2007
Jan P. Nicolay; Sabine Gatz; Gerd Liebig; Erich Gulbins; Florian Lang