Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan-Philip Merkl is active.

Publication


Featured researches published by Jan-Philip Merkl.


Langmuir | 2014

Polymer-assisted self-assembly of superparamagnetic iron oxide nanoparticles into well-defined clusters: controlling the collective magnetic properties.

Christian Schmidtke; Robin Eggers; Robert Zierold; Artur Feld; Hauke Kloust; Christopher Wolter; Johannes Michael Ostermann; Jan-Philip Merkl; Theo Schotten; Kornelius Nielsch; Horst Weller

The combination of superstructure-forming amphiphilic block copolymers and superparamagnetic iron oxide nanoparticles produces new nano/microcomposites with unique size-dependent properties. Herein, we demonstrate the controlled clustering of superparamagnetic iron oxide nanoparticles (SPIOs) ranging from discretely encapsulated SPIOs to giant clusters, containing hundreds or even more particles, using an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. Within these clusters, the SPIOs interact with each other and show new collective properties, neither obtainable with singly encapsulated nor with the bulk material. We observed cluster-size-dependent magnetic properties, influencing the blocking temperature, the magnetoviscosity of the liquid suspension, and the r2 relaxivity for magnetic iron oxide nanoparticles. The clustering methodology can be expanded also to other nanoparticle materials [CdSe/CdS/ZnS core/shell/shell quantum dots (QDs), CdSe/CdS quantum dots/quantum rods (QDQRs), gold nanoparticles, and mixtures thereof].


Angewandte Chemie | 2015

A universal approach to ultrasmall magneto-fluorescent nanohybrids.

Artur Feld; Jan-Philip Merkl; Hauke Kloust; Sandra Flessau; Christian Schmidtke; Christopher Wolter; Johannes Michael Ostermann; Michael Kampferbeck; Robin Eggers; Alf Mews; Theo Schotten; Horst Weller

Seeded emulsion polymerization is a powerful universal method to produce ultrasmall multifunctional magnetic nanohybrids. In a two-step procedure, iron oxide nanocrystals were initially encapsulated in a polystyrene (PS) shell and subsequently used as beads for a controlled assembly of elongated quantum dots/quantum rods (QDQRs). The synthesis of a continuous PS shell allows the whole construct to be fixed and the composition of the nanohybrid to be tuned. The fluorescence of the QDQRs and magnetism of iron oxide were perfectly preserved, as confirmed by single-particle investigation, fluorescence decay measurements, and relaxometry. Bio-functionalization of the hybrids was straightforward, involving copolymerization of appropriate affinity ligands as shown by immunoblot analysis. Additionally, the universality of this method was shown by the embedment of a broad scale of NPs.


Journal of the American Chemical Society | 2016

Bio-orthogonal Coupling as a Means of Quantifying the Ligand Density on Hydrophilic Quantum Dots

Naiqian Zhan; Goutam Palui; Jan-Philip Merkl; Hedi Mattoussi

We describe the synthesis of two metal-coordinating ligands that present one or two lipoic acid (LA) anchors, a hydrophilic polyethylene glycol (PEG) segment and a terminal reactive group made of an azide or an aldehyde, two functionalities with great utility in bio-orthogonal coupling techniques. These ligands were introduced onto the QD surfaces using a combination of photochemical ligation and mixed cap exchange strategy, where control over the fraction of azide and aldehyde groups per nanocrystal can be easily achieved: LA-PEG-CHO, LA-PEG-N3, and bis(LA)-PEG-CHO. We then demonstrate the application of two novel bio-orthogonal coupling strategies directly on luminescent quantum dot (QD) surfaces that use click chemistry and hydrazone ligation under catalyst-free conditions. We applied the highly efficient hydrazone ligation to couple 2-hydrozinopyridine (2-HP) to aldehyde-functionalized QDs, which produces a stable hydrazone chromophore with a well-defined optical signature. This unique optical feature has enabled us to extract a measure for the ligand density on the QDs for a few distinct sizes and for different ligand architectures, namely mono-LA-PEG and bis(LA)-PEG. We found that the foot-print-area per ligand was unaffected by the nanocrystal size but strongly depended on the ligand coordination number. Additionally, we showed that when the two bio-orthogonal functionalities (aldehyde and azide) are combined on the same QD platform, the nanocrystal can be specifically reacted with two distinct targets and with great specificity. This design yields QD platforms with distinct chemoselectivities that are greatly promising for use as carriers for in vivo imaging and delivery.


Nano Letters | 2016

Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling.

Christian Strelow; T. Sverre Theuerholz; Christian Schmidtke; Marten Richter; Jan-Philip Merkl; Hauke Kloust; Ziliang Ye; Horst Weller; Tony F. Heinz; Andreas Knorr; Holger Lange

Hybrid nanosystems composed of excitonic and plasmonic constituents can have different properties than the sum of of the two constituents, due to the exciton-plasmon interaction. Here, we report on a flexible model system based on colloidal nanoparticles that can form hybrid combinations by self-organization. The system allows us to tune the interparticle distance and to combine nanoparticles of different sizes and thus enables a systematic investigation of the exciton-plasmon coupling by a combination of optical spectroscopy and quantum-optical theory. We experimentally observe a strong influence of the energy difference between exciton and plasmon, as well as an interplay of nanoparticle size and distance on the coupling. We develop a full quantum theory for the luminescence dynamics and discuss the experimental results in terms of the Purcell effect. As the theory describes excitation as well as coherent and incoherent emission, we also consider possible quantum optical effects. We find a good agreement of the observed and the calculated luminescence dynamics induced by the Purcell effect. This also suggests that the self-organized hybrid system can be used as platform to address quantum optical effects.


Beilstein Journal of Nanotechnology | 2015

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals

Johannes Michael Ostermann; Christian Schmidtke; Christopher Wolter; Jan-Philip Merkl; Hauke Kloust; Horst Weller

Summary In this short review, the main challenges in the use of hydrophobic nanoparticles in biomedical application are addressed. It is shown how to overcome the different issues by the use of a polymeric encapsulation system, based on an amphiphilic polyisoprene-block-poly(ethylene glycol) diblock copolymer. On the basis of this simple molecule, the development of a versatile and powerful phase transfer strategy is summarized, focusing on the main advantages like the adjustable size, the retained properties, the excellent shielding and the diverse functionalization properties of the encapsulated nanoparticles. Finally, the extraordinary properties of these encapsulated nanoparticles in terms of toxicity and specificity in a broad in vitro test is demonstrated.


Proceedings of SPIE | 2015

Quantifying the density of surface capping ligands on semiconductor quantum dots

Naiqian Zhan; Goutam Palui; Jan-Philip Merkl; Hedi Mattoussi

We have designed a new set of coordinating ligands made of a lipoic acid (LA) anchor and poly(ethylene glycol) (PEG) hydrophilic moiety appended with a terminal aldehyde for the surface functionalization of QDs. This ligand design was combined with a recently developed photoligation strategy to prepare hydrophilic CdSe-ZnS QDs with good control over the fraction of intact aldehyde (-CHO) groups per nanocrystal. We further applied the efficient hydrazone ligation to react aldehyde-QDs with 2-hydrazinopyridine (2-HP). This covalent modification produces QD-conjugates with a well-defined absorption feature at 350 nm ascribed to the hydrazone chromophore. We exploited this unique optical signature to accurately measure the number of aldehyde groups per QD when the fraction of LA-PEG-CHO per nanocrystal was varied. This allowed us to extract an estimate for the number of LA-PEG ligands per QD. These results suggest that hydrazone ligation has the potential to provide a simple and general analytical method to estimate the number of surface ligands for a variety of nanocrystals such as metal, metal oxide and semiconductor nanocrystals.


Proceedings of SPIE | 2014

Shielding of quantum dots using diblock copolymers: implementing copper catalyzed click chemistry to fluorescent quantum dots

Jan-Philip Merkl; Johannes Michael Ostermann; Christian Schmidtke; Hauke Kloust; Robin Eggers; Artur Feld; Christopher Wolter; Anna-Marlena Kreuziger; Sandra Flessau; Hedi Mattoussi; Horst Weller

We describe the design and optimization of an amphiphilic diblock copolymer and its use to provide surface functionalization of colloidal semiconductor nanoparticles (quantum dots, QDs). This polymer coating promotes hydrophilicity of the nanocrystals while providing numerous functional groups ideally suited for biofunctionalization of the QDs using copper-catalyzed azide alkyne Husigen 1,3-cyloaddition (i.e., cupper catalyzed “click” reaction). Copper ions are known to quench the fluorescence of QDs in solution. Thus effective shielding of the nanocrystal surface is essential to apply copper-catalyzed reactions to luminescent QDs without drastically quenching their emission. We have applied a strategy based on micellar encapsulation within poly(isoprene-block- ethylene oxide) diblock-copolymers (PI-b-PEO), where three critical factors promote and control the effectiveness of the shielding of copper ion penetration: 1) The excess of PI-b-PEO, 2) the size of PI-b-PEO and 3) insertion of an additional PS-shell grown via seeded emulsion polymerization (EP) reaction. Due to the amphiphilic character of the block-copolymer, this approach provides a shielding layer surrounding the particles, preventing metal ions from reaching the QD surfaces and maintaining high photoluminescence. The effective shielding allowed the use of copper-catalyzed azide-alkyne 1,3-cycloaddition (CuAAC) to hydrophilic and highly fluorescent QDs, opening up great possibilities for the bio functionalization of QDs.


VIII INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology | 2016

Seeded emulsion polymerization as a powerful tool for the biofunctionalization of quantum dots

Lasse Habercorn; Jan-Philip Merkl; Hauke Kloust; Artur Feld; Johannes Michael Ostermann; Christian Schmidtke; Christopher Wolter; Marcus Janschel; Horst Weller

With the polymer encapsulation of quantum dots via seeded emulsion polymerization we present a powerful tool for the preparation of fluorescent nanoparticles with an extraordinary stability in aqueous solution. The method of the seeded emulsion polymerization allows a straightforward and simple in situ functionalization of the polymer shell under preserving the optical properties of the quantum dots. These requirements are inevitable for the application of semiconductor nanoparticles as markers for biomedical applications. Polymer encapsulated quantum dots have shown only a marginal loss of quantum yields when they were exposed to copper(II)-ions. Under normal conditions the quantum dots were totally quenched in presence of copper(II)-ions. Furthermore, a broad range of in situ functionalized polymer-coated quantum dots were obtained by addition of functional monomers or surfactants like fluorescent dye molecules, antibodies or specific DNA aptamers. Furthermore the emulsion polymerization can be used to ...


ACS Nano | 2013

Controlling the Physical and Biological Properties of Highly Fluorescent Aqueous Quantum Dots Using Block Copolymers of Different Size and Shape

Johannes Michael Ostermann; Jan-Philip Merkl; Sandra Flessau; Christopher Wolter; Andreas Kornowksi; Christian Schmidtke; Andrea Pietsch; Hauke Kloust; Artur Feld; Horst Weller


Nanoscale | 2014

CdSe/CdS-quantum rods: fluorescent probes for in vivo two-photon laser scanning microscopy

Jelena Dimitrijevic; Lisa Krapf; Christopher Wolter; Christian Schmidtke; Jan-Philip Merkl; Tobias Jochum; Andreas Kornowski; Anna Schüth; Andreas Gebert; Gereon Hüttmann; Tobias Vossmeyer; Horst Weller

Collaboration


Dive into the Jan-Philip Merkl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hedi Mattoussi

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge