Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Renger is active.

Publication


Featured researches published by Jan Renger.


Nano Letters | 2014

LSPR Chip for Parallel, Rapid, and Sensitive Detection of Cancer Markers in Serum

Srdjan S. Aćimović; Maria A. Ortega; Vanesa Sanz; Johann Berthelot; Jose L. Garcia-Cordero; Jan Renger; Sebastian J. Maerkl; Mark P. Kreuzer; Romain Quidant

Label-free biosensing based on metallic nanoparticles supporting localized surface plasmon resonances (LSPR) has recently received growing interest (Anker, J. N., et al. Nat. Mater. 2008, 7, 442-453). Besides its competitive sensitivity (Yonzon, C. R., et al. J. Am. Chem. Soc. 2004, 126, 12669-12676; Svendendahl, M., et al. Nano Lett. 2009, 9, 4428-4433) when compared to the surface plasmon resonance (SPR) approach based on extended metal films, LSPR biosensing features a high-end miniaturization potential and a significant reduction of the interrogation device bulkiness, positioning itself as a promising candidate for point-of-care diagnostic and field applications. Here, we present the first, paralleled LSPR lab-on-a-chip realization that goes well beyond the state-of-the-art, by uniting the latest advances in plasmonics, nanofabrication, microfluidics, and surface chemistry. Our system offers parallel, real-time inspection of 32 sensing sites distributed across 8 independent microfluidic channels with very high reproducibility/repeatability. This enables us to test various sensing strategies for the detection of biomolecules. In particular we demonstrate the fast detection of relevant cancer biomarkers (human alpha-feto-protein and prostate specific antigen) down to concentrations of 500 pg/mL in a complex matrix consisting of 50% human serum.


Nature Nanotechnology | 2013

Three-dimensional optical manipulation of a single electron spin

Michael Geiselmann; Mathieu L. Juan; Jan Renger; Jana M. Say; Louise J. Brown; F. Javier García de Abajo; Romain Quidant

Nitrogen vacancy (NV) centres in diamond are promising elemental blocks for quantum optics, spin-based quantum information processing and high-resolution sensing. However, fully exploiting the capabilities of these NV centres requires suitable strategies to accurately manipulate them. Here, we use optical tweezers as a tool to achieve deterministic trapping and three-dimensional spatial manipulation of individual nanodiamonds hosting a single NV spin. Remarkably, we find that the NV axis is nearly fixed inside the trap and can be controlled in situ by adjusting the polarization of the trapping light. By combining this unique spatial and angular control with coherent manipulation of the NV spin and fluorescence lifetime measurements near an integrated photonic system, we demonstrate individual optically trapped NV centres as a novel route for both three-dimensional vectorial magnetometry and sensing of the local density of optical states.


Applied Physics Letters | 2007

Polymer-metal waveguides characterization by Fourier plane leakage radiation microscopy

S. Massenot; J. Grandidier; A. Bouhelier; G. Colas des Francs; Laurent Markey; Jean-Claude Weeber; Alain Dereux; Jan Renger; M. U. González; Romain Quidant

The guiding properties of polymer waveguides on a thin gold film are investigated in the optical regime. The details of propagation in the waveguides are studied simultaneously in the object and Fourier planes, providing direct measurement of both the real and imaginary parts of the effective index of the guided mode. A fair agreement between theoretical analysis provided by the differential method and experimental leakage radiation microscopy data is shown. All these tools bring valuable information for designing and understanding such devices.


Optics Express | 2010

Design and properties of dielectric surface plasmon Bragg mirrors

Sukanya Randhawa; M. U. González; Jan Renger; Stefan Enoch; Romain Quidant

The ability of gratings made of dielectric ridges placed on top of flat metal layers to open gaps in the dispersion relation of surface plasmon polaritons (SPPs) is studied, both experimentally and theoretically. The gap position can be approximately predicted by the same relation as for standard optical Bragg stacks. The properties of the gap as a function of the grating parameters is numerically analyzed by using the Fourier modal method, and the presence of the gap is experimentally confirmed by leakage radiation microscopy. We also explore the performance of these dielectric gratings as SPP Bragg mirrors. The results show very good reflecting properties of these mirrors for a propagating SPP whose wavelength is inside the gap.


Optics Express | 2010

Hidden progress: broadband plasmonic invisibility

Jan Renger; Muamer Kadic; Guillaume Dupont; Srdjan S. Aćimović; Sébastien Guenneau; Romain Quidant; Stefan Enoch

One of the key challenges in current research into electromagnetic cloaking is to achieve invisibility at optical frequencies and over an extended bandwidth. There has been significant progress towards this using the idea of cloaking by sweeping under the carpet of Li and Pendry. Here, we show that we can harness surface plasmon polaritons at a metal surface structured with a dielectric material to obtain a unique control of their propagation. We exploit this control to demonstrate both theoretically and experimentally cloaking over an unprecedented bandwidth (650-900 nm). Our non-resonant plasmonic metamaterial is designed using transformational optics extended to plasmonics and allows a curved reflector to mimic a flat mirror. Our theoretical predictions are validated by experiments mapping the surface light intensity at a wavelength of 800 nm.


Nano Letters | 2008

Distance Dependent Spectral Tuning of Two Coupled Metal Nanoparticles

Phillip Olk; Jan Renger; Marc Tobias Wenzel; Lukas M. Eng

The spectral properties of two spherical metallic nanoparticles of 80 nm in diameter are examined with regard to the interparticle distance and relative polarization of the excitation light. One Au nanoparticle is attached to a scanning fiber probe and the second to a scanning substrate. This configuration allows three-dimensional and arbitrary manipulation of both distance and relative orientation with respect to the incident light polarization. As supported by numerical simulations, a periodic modulation of the coupled plasmon resonance is observed for separations smaller than 1.5 microm. This interparticle coupling affects the scattering cross section in terms of spectral position and spectral width as well as the integral intensity of the Mie-scattered light.


Nature Communications | 2014

Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching

Emilie Wientjes; Jan Renger; Alberto G. Curto; Richard J. Cogdell; Niek F. van Hulst

The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~\n20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes.


Optics Express | 2012

Performance of electro-optical plasmonic ring resonators at telecom wavelengths

Sukanya Randhawa; Sébastien Lachèze; Jan Renger; Alexandre Bouhelier; Roch Espiau de Lamaestre; Alain Dereux; Romain Quidant

In this work we report on the characteristics of an electro-optical dielectric-loaded surface plasmon polariton waveguide ring resonator. By doping the dielectric host matrix with an electro-optical material and designing an appropriate set of planar electrodes, we measured a 16% relative change of transmission upon application of a controlled electric field. We have analyzed the temporal response of the device and conclude that electrostriction of the host matrix is playing a dominating role in the transmission response.


Optics Express | 2011

Enhanced nonlinear response from metal surfaces

Jan Renger; Romain Quidant; Lukas Novotny

While metals benefit from a strong nonlinearity at optical frequencies, its practical exploitation is limited by the weak penetration of the electric field within the metal and the screening by the surface charges. It is shown here that this limitation can be bypassed by depositing a thin dielectric layer on the metal surface or, alternatively, using a thin metal film. This strategy enables us to enhance four-wave mixing in metals by up to four orders of magnitude.


Nano Letters | 2010

Nonlinear Dark-Field Microscopy

Hayk Harutyunyan; Stefano Palomba; Jan Renger; Romain Quidant; Lukas Novotny

Dark-field microscopy is a background-free imaging method that provides high sensitivity and a large signal-to-noise ratio. It finds application in nanoscale detection, biophysics and biosensing, particle tracking, single molecule spectroscopy, X-ray imaging, and failure analysis of materials. In dark-field microscopy, the unscattered light path is typically excluded from the angular range of signal detection. This restriction reduces the numerical aperture and affects the resolution. Here we introduce a nonlinear dark-field scheme that overcomes this restriction. Two laser beams of frequencies ω1 and ω2 are used to illuminate a sample surface and to generate a purely evanescent field at the four-wave mixing (4WM) frequency ω4wm = 2ω1 - ω2. The evanescent 4WM field scatters at sample features and generates radiation that is detected by standard far-field optics. This nonlinear dark-field scheme works with samples of any material and is compatible with applications ranging from biological imaging to failure analysis.

Collaboration


Dive into the Jan Renger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. U. González

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Javier García de Abajo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Srdjan S. Aćimović

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Geiselmann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge