Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Rossmeisl is active.

Publication


Featured researches published by Jan Rossmeisl.


Nature Chemistry | 2009

Alloys of platinum and early transition metals as oxygen reduction electrocatalysts

Jeffrey Greeley; Ifan E. L. Stephens; Alexander S. Bondarenko; Tobias Peter Johansson; Heine Anton Hansen; Thomas F. Jaramillo; Jan Rossmeisl; Ib Chorkendorff; Jens K. Nørskov

The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V.


Nature Chemistry | 2009

Towards the computational design of solid catalysts

Jens K. Nørskov; Thomas Bligaard; Jan Rossmeisl; Claus H. Christensen

Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts with increased activity and catalysts with improved selectivity. We discuss how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure.


Chemcatchem | 2011

Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces

Isabela C. Man; Hai-Yan Su; Federico Calle-Vallejo; Heine A. Hansen; José I. Martínez; Nilay İnoğlu; John R. Kitchin; Thomas F. Jaramillo; Jens K. Nørskov; Jan Rossmeisl

Trends in electrocatalytic activity of the oxygen evolution reaction (OER) are investigated on the basis of a large database of HO* and HOO* adsorption energies on oxide surfaces. The theoretical overpotential was calculated by applying standard density functional theory in combination with the computational standard hydrogen electrode (SHE) model. We showed that by the discovery of a universal scaling relation between the adsorption energies of HOO* vs HO*, it is possible to analyze the reaction free energy diagrams of all the oxides in a general way. This gave rise to an activity volcano that was the same for a wide variety of oxide catalyst materials and a universal descriptor for the oxygen evolution activity, which suggests a fundamental limitation on the maximum oxygen evolution activity of planar oxide catalysts.


Energy and Environmental Science | 2010

How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

Andrew A. Peterson; Frank Abild-Pedersen; Felix Studt; Jan Rossmeisl; Jens K. Nørskov

Density functional theory calculations explain coppers unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels.


Energy and Environmental Science | 2012

Understanding the electrocatalysis of oxygen reduction on platinum and its alloys

Ifan E. L. Stephens; Alexander S. Bondarenko; Ulrik Grønbjerg; Jan Rossmeisl; Ib Chorkendorff

The high cost of low temperature fuel cells is to a large part dictated by the high loading of Pt required to catalyse the oxygen reduction reaction (ORR). Arguably the most viable route to decrease the Pt loading, and to hence commercialise these devices, is to improve the ORR activity of Pt by alloying it with other metals. In this perspective paper we provide an overview of the fundamentals underlying the reduction of oxygen on platinum and its alloys. We also report the ORR activity of Pt5La for the first time, which shows a 3.5- to 4.5-fold improvement in activity over Pt in the range 0.9 to 0.87 V, respectively. We employ angle resolved X-ray photoelectron spectroscopy and density functional theory calculations to understand the activity of Pt5La.


Nature Materials | 2011

Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

Yidong Hou; Billie Abrams; Peter Christian Kjærgaard Vesborg; Mårten E. Björketun; Konrad Herbst; Lone Bech; Alessandro Setti; Christian Danvad Damsgaard; Thomas Pedersen; Ole Hansen; Jan Rossmeisl; Søren Dahl; Jens K. Nørskov; Ib Chorkendorff

The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo(3)S(4)) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10%. The experimental observations are supported by density functional theory calculations of the Mo(3)S(4) clusters adsorbed on the hydrogen-terminated Si(100) surface, providing insights into the nature of the active site.


Journal of the American Chemical Society | 2011

Tuning the Activity of Pt(111) for Oxygen Electroreduction by Subsurface Alloying

Ifan E. L. Stephens; Alexander S. Bondarenko; Francisco J. Pérez-Alonso; Federico Calle-Vallejo; Lone Bech; Tobias Peter Johansson; Anders K. Jepsen; Rasmus Frydendal; Brian P. Knudsen; Jan Rossmeisl; Ib Chorkendorff

To enable the development of low temperature fuel cells, significant improvements are required to the efficiency of the Pt electrocatalysts at the cathode, where oxygen reduction takes place. Herein, we study the effect of subsurface solute metals on the reactivity of Pt, using a Cu/Pt(111) near-surface alloy. Our investigations incorporate electrochemical measurements, ultrahigh vacuum experiments, and density functional theory. Changes to the OH binding energy, ΔE(OH), were monitored in situ and adjusted continuously through the subsurface Cu coverage. The incorporation of submonolayer quantities of Cu into Pt(111) resulted in an 8-fold improvement in oxygen reduction activity. The most optimal catalyst for oxygen reduction has an ΔE(OH) ≈ 0.1 eV weaker than that of pure Pt, validating earlier theoretical predictions.


Journal of Chemical Physics | 2010

Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

Jens Strabo Hummelshøj; J. Blomqvist; Soumendu Datta; Tejs Vegge; Jan Rossmeisl; Kristian Sommer Thygesen; Alan C. Luntz; Karsten Wedel Jacobsen; Jens K. Nørskov

We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li(2)O(2) electrode and show that in the presence of Li vacancies Li(2)O(2) becomes a conductor.


Physical Chemistry Chemical Physics | 2007

Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode

Egill Skúlason; Gustav S. Karlberg; Jan Rossmeisl; Thomas Bligaard; Jeffrey Greeley; Hannes Jónsson; Jens K. Nørskov

We present results of density functional theory calculations on a Pt(111) slab with a bilayer of water, solvated protons in the water layer, and excess electrons in the metal surface. In this way we model the electrochemical double layer at a platinum electrode. By varying the number of protons/electrons in the double layer we investigate the system as a function of the electrode potential. We study the elementary processes involved in the hydrogen evolution reaction, 2(H(+) + e(-)) --> H(2), and determine the activation energy and predominant reaction mechanism as a function of electrode potential. We confirm by explicit calculations the notion that the variation of the activation barrier with potential can be viewed as a manifestation of the Brønsted-Evans-Polanyi-type relationship between activation energy and reaction energy found throughout surface chemistry.


Physical Chemistry Chemical Physics | 2008

Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT

Heine Anton Hansen; Jan Rossmeisl; Jens K. Nørskov

Based on density functional theory calculations we investigate the electrochemically most stable surface structures as a function of pH and electrostatic potential for Pt(111), Ag(111) and Ni(111), and we construct surface Pourbaix diagrams. We study the oxygen reduction reaction (ORR) on the different surface structures and calculate the free energy of the intermediates. We estimate their catalytic activity for ORR by determining the highest potential at which all ORR reaction steps reduce the free energy. We obtain self-consistency in the sense that the surface is stable under the potential at which that particular surface can perform ORR. Using the self consistent surfaces, the activity of the very reactive Ni surface changes dramatically, whereas the activity of the more noble catalysts Pt and Ag remains unchanged. The reason for this difference is the oxidation of the reactive surface. Oxygen absorbed on the surface shifts the reactivity towards the weak binding region, which in turn increases the activity. The oxidation state of the surface and the ORR potential are constant versus the reversible hydrogen electrode (RHE). The dissolution potential in acidic solution, on the other hand, is constant vs. the standard hydrogen electrode (SHE). For Ag, this means that where the potential for dissolution and ORR are about the same at pH = 0, Ag becomes more stable relative to RHE as pH is increased. Hence the pH dependent stability offers an explanation for the possible use of Ag in alkaline fuel cell cathodes.

Collaboration


Dive into the Jan Rossmeisl's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ib Chorkendorff

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Ifan E. L. Stephens

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Vladimir Tripkovic

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Heine Anton Hansen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Mårten E. Björketun

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Malacrida

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Martin Hangaard Hansen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge