Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Šafář is active.

Publication


Featured researches published by Jan Šafář.


Cytogenetic and Genome Research | 2010

Development of chromosome-specific BAC resources for genomics of bread wheat.

Jan Šafář; Hana Šimková; Marie Kubaláková; Jarmila Číhalíková; Pavla Suchánková; Jan Bartoš; Jaroslav Doležel

The large bread wheat genome (1C ∼ 17 Gbp) contains a preponderance of repetitive DNA and the species is polyploid. These characteristics together serve to hamper the molecular analysis of the wheat genome. Its complexity can, however, be reduced by using flow cytometry to isolate individual chromosomes, and these can be exploited to construct chromosome-specific BAC libraries. Such libraries simplify the task of physical map construction, positional cloning and the targeted development of genetic markers. Rapid improvements in the efficiency and cost of DNA sequencing provide an opportunity to contemplate sequencing the wheat genome by preparing sequence-ready physical maps for each chromosome or chromosome arm in turn. The quality of the chromosome-specific libraries depends on their chromosome coverage and the mean insert size. First-generation libraries suffered from a relatively low mean insert size, but improvements to the protocol have generated a second wave of libraries with a significantly increased mean insert size and better chromosome coverage. Each chromosome (arm)-specific library is composed of a manageable number of clones, and so represents a practical tool in the area of wheat genomics.


BMC Genomics | 2008

Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

Hana Šimková; Jan T. Svensson; Pascal Condamine; Eva Hřibová; Pavla Suchánková; Prasanna R. Bhat; Jan Bartoš; Jan Šafář; Timothy J. Close; Jaroslav Doležel

BackgroundFlow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification.ResultsHere we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA). Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA) for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H.ConclusionThe results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which considerably expands the potential of chromosome flow sorting in plant genomics.


BMC Plant Biology | 2008

A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R

Jan Bartoš; Etienne Paux; Robert Kofler; Miroslava Havránková; David Kopecký; Pavla Suchánková; Jan Šafář; Hana Šimková; Christopher D. Town; T. Lelley; Catherine Feuillet; Jaroslav Doležel

BackgroundRye (Secale cereale L.) belongs to tribe Triticeae and is an important temperate cereal. It is one of the parents of man-made species Triticale and has been used as a source of agronomically important genes for wheat improvement. The short arm of rye chromosome 1 (1RS), in particular is rich in useful genes, and as it may increase yield, protein content and resistance to biotic and abiotic stress, it has been introgressed into wheat as the 1BL.1RS translocation. A better knowledge of the rye genome could facilitate rye improvement and increase the efficiency of utilizing rye genes in wheat breeding.ResultsHere, we report on BAC end sequencing of 1,536 clones from two 1RS-specific BAC libraries. We obtained 2,778 (90.4%) useful sequences with a cumulative length of 2,032,538 bp and an average read length of 732 bp. These sequences represent 0.5% of 1RS arm. The GC content of the sequenced fraction of 1RS is 45.9%, and at least 84% of the 1RS arm consists of repetitive DNA. We identified transposable element junctions in BESs and developed insertion site based polymorphism markers (ISBP). Out of the 64 primer pairs tested, 17 (26.6%) were specific for 1RS. We also identified BESs carrying microsatellites suitable for development of 1RS-specific SSR markers.ConclusionThis work demonstrates the utility of chromosome arm-specific BAC libraries for targeted analysis of large Triticeae genomes and provides new sequence data from the rye genome and molecular markers for the short arm of rye chromosome 1.


Functional & Integrative Genomics | 2012

Chromosomes in the flow to simplify genome analysis

Jaroslav Doležel; Jan Vrána; Jan Šafář; Jan Bartoš; Marie Kubaláková; Hana Šimková

Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 102–104 chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.


Plant Physiology | 2011

A 3,000-Loci Transcription Map of Chromosome 3B Unravels the Structural and Functional Features of Gene Islands in Hexaploid Wheat

Camille Rustenholz; Frédéric Choulet; Christel Laugier; Jan Šafář; Hana Šimková; Jaroslav Doležel; Federica Magni; Simone Scalabrin; Federica Cattonaro; Sonia Vautrin; Arnaud Bellec; Hélène Bergès; Catherine Feuillet; Etienne Paux

To improve our understanding of the organization and regulation of the wheat (Triticum aestivum) gene space, we established a transcription map of a wheat chromosome (3B) by hybridizing a newly developed wheat expression microarray with bacterial artificial chromosome pools from a new version of the 3B physical map as well as with cDNA probes derived from 15 RNA samples. Mapping data for almost 3,000 genes showed that the gene space spans the whole chromosome 3B with a 2-fold increase of gene density toward the telomeres due to an increase in the number of genes in islands. Comparative analyses with rice (Oryza sativa) and Brachypodium distachyon revealed that these gene islands are composed mainly of genes likely originating from interchromosomal gene duplications. Gene Ontology and expression profile analyses for the 3,000 genes located along the chromosome revealed that the gene islands are enriched significantly in genes sharing the same function or expression profile, thereby suggesting that genes in islands acquired shared regulation during evolution. Only a small fraction of these clusters of cofunctional and coexpressed genes was conserved with rice and B. distachyon, indicating a recent origin. Finally, genes with the same expression profiles in remote islands (coregulation islands) were identified suggesting long-distance regulation of gene expression along the chromosomes in wheat.


Genome Biology | 2013

A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat

Romain Philippe; Etienne Paux; Isabelle Bertin; Pierre Sourdille; Frédéric Choulet; Christel Laugier; Hana Šimková; Jan Šafář; Arnaud Bellec; Sonia Vautrin; Zeev Frenkel; Federica Cattonaro; Federica Magni; Simone Scalabrin; Mihaela Martis; Klaus F. X. Mayer; Abraham B. Korol; Hélène Bergès; Jaroslav Doležel; Catherine Feuillet

BackgroundAs for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning.ResultsUsing a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome.ConclusionsHere, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.


BMC Genomics | 2008

A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS)

Hana Šimková; Jan Šafář; Pavla Suchánková; Pavlína Kovářová; Jan Bartoš; Marie Kubaláková; Jaroslav Janda; Jarmila Číhalíková; Rohit Mago; T. Lelley; Jaroslav Doležel

BackgroundGenomics of rye (Secale cereale L.) is impeded by its large nuclear genome (1C~7,900 Mbp) with prevalence of DNA repeats (> 90%). An attractive possibility is to dissect the genome to small parts after flow sorting particular chromosomes and chromosome arms. To test this approach, we have chosen 1RS chromosome arm, which represents only 5.6% of the total rye genome. The 1RS arm is an attractive target as it carries many important genes and because it became part of the wheat gene pool as the 1BL.1RS translocation.ResultsWe demonstrate that it is possible to sort 1RS arm from wheat-rye ditelosomic addition line. Using this approach, we isolated over 10 million of 1RS arms using flow sorting and used their DNA to construct a 1RS-specific BAC library, which comprises 103,680 clones with average insert size of 73 kb. The library comprises two sublibraries constructed using Hin dIII and Eco RI and provides a deep coverage of about 14-fold of the 1RS arm (442 Mbp). We present preliminary results obtained during positional cloning of the stem rust resistance gene SrR, which confirm a potential of the library to speed up isolation of agronomically important genes by map-based cloning.ConclusionWe present a strategy that enables sorting short arms of several chromosomes of rye. Using flow-sorted chromosomes, we have constructed a deep coverage BAC library specific for the short arm of chromosome 1R (1RS). This is the first subgenomic BAC library available for rye and we demonstrate its potential for positional gene cloning. We expect that the library will facilitate development of a physical contig map of 1RS and comparative genomics of the homoeologous chromosome group 1 of wheat, barley and rye.


Chromosome Research | 2002

Isolation, characterization and chromosome localization of repetitive DNA sequences in bananas (Musa spp.)

Miroslav Valárik; Hana Šimková; Eva Hřibová; Jan Šafář; M. Doleželová; Jaroslav Doležel

Partial genomic DNA libraries were constructed in Musa acuminata and M. balbisiana and screened for clones carrying repeated sequences, and sequences carrying rDNA. Isolated clones were characterized in terms of copy number, genomic distribution in M. acuminata and M. balbisiana, and sequence similarity to known DNA sequences. Ribosomal RNA genes have been the most abundant sequences recovered. FISH with probes for DNA clones Radka1 and Radka7, which carry different fragments of Musa 26S rDNA, and Radka14, for which no homology with known DNA sequences has been found, resulted in clear signals at secondary constrictions. Only one clone carrying 5S rDNA, named Radka2, has been recovered. All remaining DNA clones exhibited more or less pronounced clustering at centromeric regions. The study revealed small differences in genomic distribution of repetitive DNA sequences between M. acuminata and M. balbisiana, the only exception being the 5S rDNA where the two Musa clones under study differed in the number of sites. All repetitive sequences were more abundant in M. acuminata whose genome is about 12% larger than that of M. balbisiana. While, for some sequences, the differences in copy number between the species were relatively small, for some of them, e.g. Radka5, the difference was almost thirty-fold. These observations suggest that repetitive DNA sequences contribute to the difference in genome size between both species, albeit to different extents. Isolation and characterization of new repetitive DNA sequences improves the knowledge of long-range organization of chromosomes in Musa.


BioMed Research International | 2011

BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes

Hana Šimková; Jan Šafář; Marie Kubaláková; Pavla Suchánková; Jarmila Číhalíková; Heda Robert-Quatre; Perumal Azhaguvel; Yiqun Weng; Junhua Peng; Nora L. V. Lapitan; Yaqin Ma; Frank M. You; Ming-Cheng Luo; Jan Bartoš; Jaroslav Doležel

Positional cloning in bread wheat is a tedious task due to its huge genome size and hexaploid character. BAC libraries represent an essential tool for positional cloning. However, wheat BAC libraries comprise more than million clones, which makes their screening very laborious. Here, we present a targeted approach based on chromosome-specific BAC libraries. Such libraries were constructed from flow-sorted arms of wheat chromosome 7D. A library from the short arm (7DS) consisting of 49,152 clones with 113 kb insert size represented 12.1 arm equivalents whereas a library from the long arm (7DL) comprised 50,304 clones of 116 kb providing 14.9x arm coverage. The 7DS library was PCR screened with markers linked to Russian wheat aphid resistance gene DnCI2401, the 7DL library was screened by hybridization with a probe linked to greenbug resistance gene Gb3. The small number of clones combined with high coverage made the screening highly efficient and cost effective.


PLOS ONE | 2013

Physical Mapping Integrated with Syntenic Analysis to Characterize the Gene Space of the Long Arm of Wheat Chromosome 1A

Stuart J. Lucas; Bala Anı Akpınar; Melda Kantar; Zohar B. Weinstein; Fatma Aydınoğlu; Jan Šafář; Hana Šimková; Zeev Frenkel; Abraham B. Korol; Federica Magni; Federica Cattonaro; Sonia Vautrin; Arnaud Bellec; Hélène Bergès; Jaroslav Doležel; Hikmet Budak

Background Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis. Methodology/Principal Findings We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC-based or 583 LTC-based contigs. Conclusions/Significance The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A.

Collaboration


Dive into the Jan Šafář's collaboration.

Top Co-Authors

Avatar

Jaroslav Doležel

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Hana Šimková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hélène Bergès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jarmila Číhalíková

Czechoslovak Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catherine Feuillet

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge