Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Schellenberger is active.

Publication


Featured researches published by Jan Schellenberger.


Nature Protocols | 2007

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0

Jan Schellenberger; Richard Que; Ronan M. T. Fleming; Ines Thiele; Jeffrey D. Orth; Adam M. Feist; Daniel C. Zielinski; Aarash Bordbar; Nathan E. Lewis; Sorena Rahmanian; Joseph Kang; Daniel R. Hyduke; Bernhard O. Palsson

Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) (13)C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language-formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods.


BMC Bioinformatics | 2010

BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions

Jan Schellenberger; Junyoung O. Park; Tom M Conrad; Bernhard O. Palsson

BackgroundGenome-scale metabolic reconstructions under the Constraint Based Reconstruction and Analysis (COBRA) framework are valuable tools for analyzing the metabolic capabilities of organisms and interpreting experimental data. As the number of such reconstructions and analysis methods increases, there is a greater need for data uniformity and ease of distribution and use.DescriptionWe describe BiGG, a knowledgebase of Biochemically, Genetically and Genomically structured genome-scale metabolic network reconstructions. BiGG integrates several published genome-scale metabolic networks into one resource with standard nomenclature which allows components to be compared across different organisms. BiGG can be used to browse model content, visualize metabolic pathway maps, and export SBML files of the models for further analysis by external software packages. Users may follow links from BiGG to several external databases to obtain additional information on genes, proteins, reactions, metabolites and citations of interest.ConclusionsBiGG addresses a need in the systems biology community to have access to high quality curated metabolic models and reconstructions. It is freely available for academic use at http://bigg.ucsd.edu.


Nature Biotechnology | 2010

Large-scale in silico modeling of metabolic interactions between cell types in the human brain

Nathan E. Lewis; Gunnar Schramm; Aarash Bordbar; Jan Schellenberger; Michael Paul Andersen; Jeffrey K. Cheng; Nilam Patel; Alex Yee; Randall Lewis; Roland Eils; Rainer König; Bernhard O. Palsson

Metabolic interactions between multiple cell types are difficult to model using existing approaches. Here we present a workflow that integrates gene expression data, proteomics data and literature-based manual curation to model human metabolism within and between different types of cells. Transport reactions are used to account for the transfer of metabolites between models of different cell types via the interstitial fluid. We apply the method to create models of brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types relevant to Alzheimers disease. Analysis of the models identifies genes and pathways that may explain observed experimental phenomena, including the differential effects of the disease on cell types and regions of the brain. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in the human tissue microenvironment and provide detailed mechanistic insight into high-throughput data analysis.A workflow is presented that integrates gene expression data, proteomic data, and literature-based manual curation to construct multicellular, tissue-specific models of human brain energy metabolism that recapitulate metabolic interactions between astrocytes and various neuron types. Three analyses are applied for gene identification, analysis of omics data, and analysis of physiological states. First, we identify glutamate decarboxylase as a target that may contribute to cell-type and regional specificity in Alzheimer’s disease. Second, the decreased metabolic rate seen in affected brain regions in Alzheimer’s disease is consistent with a suppression of central metabolic gene expression in histopathologically normal neurons. Third, we identify pathways in cholinergic neurons that couple mitochondrial metabolism and cytosolic acetylcholine production, and subsequently find that cholinergic neurotransmission accounts for ∼3% of brain neurotransmission. Constraint-based modeling can thus contribute to the study and analysis of multicellular metabolic processes in human tissues, and provide detailed mechanistic insight into high-throughput data analysis.


Molecular Systems Biology | 2010

Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions.

Aarash Bordbar; Nathan E. Lewis; Jan Schellenberger; Bernhard O. Palsson; Neema Jamshidi

Metabolic coupling of Mycobacterium tuberculosis to its host is foundational to its pathogenesis. Computational genome‐scale metabolic models have shown utility in integrating ‐omic as well as physiologic data for systemic, mechanistic analysis of metabolism. To date, integrative analysis of host–pathogen interactions using in silico mass‐balanced, genome‐scale models has not been performed. We, therefore, constructed a cell‐specific alveolar macrophage model, iAB‐AMØ‐1410, from the global human metabolic reconstruction, Recon 1. The model successfully predicted experimentally verified ATP and nitric oxide production rates in macrophages. This model was then integrated with an M. tuberculosis H37Rv model, iNJ661, to build an integrated host–pathogen genome‐scale reconstruction, iAB‐AMØ‐1410‐Mt‐661. The integrated host–pathogen network enables simulation of the metabolic changes during infection. The resulting reaction activity and gene essentiality targets of the integrated model represent an altered infectious state. High‐throughput data from infected macrophages were mapped onto the host–pathogen network and were able to describe three distinct pathological states. Integrated host–pathogen reconstructions thus form a foundation upon which understanding the biology and pathophysiology of infections can be developed.


Journal of Biological Chemistry | 2009

Use of Randomized Sampling for Analysis of Metabolic Networks

Jan Schellenberger; Bernhard O. Palsson

Genome-scale metabolic network reconstructions in microorganisms have been formulated and studied for about 8 years. The constraint-based approach has shown great promise in analyzing the systemic properties of these network reconstructions. Notably, constraint-based models have been used successfully to predict the phenotypic effects of knock-outs and for metabolic engineering. The inherent uncertainty in both parameters and variables of large-scale models is significant and is well suited to study by Monte Carlo sampling of the solution space. These techniques have been applied extensively to the reaction rate (flux) space of networks, with more recent work focusing on dynamic/kinetic properties. Monte Carlo sampling as an analysis tool has many advantages, including the ability to work with missing data, the ability to apply post-processing techniques, and the ability to quantify uncertainty and to optimize experiments to reduce uncertainty. We present an overview of this emerging area of research in systems biology.


Metabolic Engineering | 2010

Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.

Adam M. Feist; Daniel C. Zielinski; Jeffrey D. Orth; Jan Schellenberger; Markus J. Herrgård; Bernhard O. Palsson

Integrated approaches utilizing in silico analyses will be necessary to successfully advance the field of metabolic engineering. Here, we present an integrated approach through a systematic model-driven evaluation of the production potential for the bacterial production organism Escherichia coli to produce multiple native products from different representative feedstocks through coupling metabolite production to growth rate. Designs were examined for 11 unique central metabolism and amino acid targets from three different substrates under aerobic and anaerobic conditions. Optimal strain designs were reported for designs which possess maximum yield, substrate-specific productivity, and strength of growth-coupling for up to 10 reaction eliminations (knockouts). In total, growth-coupled designs could be identified for 36 out of the total 54 conditions tested, corresponding to eight out of the 11 targets. There were 17 different substrate/target pairs for which over 80% of the theoretical maximum potential could be achieved. The developed method introduces a new concept of objective function tilting for strain design. This study provides specific metabolic interventions (strain designs) for production strains that can be experimentally implemented, characterizes the potential for E. coli to produce native compounds, and outlines a strain design pipeline that can be utilized to design production strains for additional organisms.


Biophysical Journal | 2011

Elimination of Thermodynamically Infeasible Loops in Steady-State Metabolic Models

Jan Schellenberger; Nathan E. Lewis; Bernhard O. Palsson

The constraint-based reconstruction and analysis (COBRA) framework has been widely used to study steady-state flux solutions in genome-scale metabolic networks. One shortcoming of current COBRA methods is the possible violation of the loop law in the computed steady-state flux solutions. The loop law is analogous to Kirchhoffs second law for electric circuits, and states that at steady state there can be no net flux around a closed network cycle. Although the consequences of the loop law have been known for years, it has been computationally difficult to work with. Therefore, the resulting loop-law constraints have been overlooked. Here, we present a general mixed integer programming approach called loopless COBRA (ll-COBRA), which can be used to eliminate all steady-state flux solutions that are incompatible with the loop law. We apply this approach to improve flux predictions on three common COBRA methods: flux balance analysis, flux variability analysis, and Monte Carlo sampling of the flux space. Moreover, we demonstrate that the imposition of loop-law constraints with ll-COBRA improves the consistency of simulation results with experimental data. This method provides an additional constraint for many COBRA methods, enabling the acquisition of more realistic simulation results.


Biophysical Journal | 2010

Functional Characterization of Alternate Optimal Solutions of Escherichia coli's Transcriptional and Translational Machinery

Ines Thiele; Ronan M. T. Fleming; Aarash Bordbar; Jan Schellenberger; Bernhard O. Palsson

The constraint-based reconstruction and analysis approach has recently been extended to describe Escherichia colis transcriptional and translational machinery. Here, we introduce the concept of reaction coupling to represent the dependency between protein synthesis and utilization. These coupling constraints lead to a significant contraction of the feasible set of steady-state fluxes. The subset of alternate optimal solutions (AOS) consistent with maximal ribosome production was calculated. The majority of transcriptional and translational reactions were active for all of these AOS, showing that the network has a low degree of redundancy. Furthermore, all calculated AOS contained the qualitative expression of at least 92% of the known essential genes. Principal component analysis of AOS demonstrated that energy currencies (ATP, GTP, and phosphate) dominate the networks capability to produce ribosomes. Additionally, we identified regulatory control points of the network, which include the transcription reactions of sigma70 (RpoD) as well as that of a degradosome component (Rne) and of tRNA charging (ValS). These reactions contribute significant variance among AOS. These results show that constraint-based modeling can be applied to gain insight into the systemic properties of E. colis transcriptional and translational machinery.


BMC Systems Biology | 2012

Predicting outcomes of steady-state 13C isotope tracing experiments using Monte Carlo sampling

Jan Schellenberger; Daniel C. Zielinski; Wing Choi; Sunthosh Madireddi; Vasiliy A. Portnoy; David A. Scott; Jennifer L. Reed; Andrei L. Osterman; Bernhard O. Palsson

BackgroundCarbon-13 (13C) analysis is a commonly used method for estimating reaction rates in biochemical networks. The choice of carbon labeling pattern is an important consideration when designing these experiments. We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the flux distribution beforehand.ResultsUsing a large E. coli isotopomer model, different commercially available substrate labeling patterns were tested computationally for their ability to determine reaction fluxes. The choice of optimal labeled substrate was found to be dependent upon the desired experimental objective. Many commercially available labels are predicted to be outperformed by complex labeling patterns. Based on Monte Carlo Sampling, the dimensionality of experimental data was found to be considerably less than anticipated, suggesting that effectiveness of 13C experiments for determining reaction fluxes across a large-scale metabolic network is less than previously believed.ConclusionsWhile 13C analysis is a useful tool in systems biology, high redundancy in measurements limits the information that can be obtained from each experiment. It is however possible to compute potential limitations before an experiment is run and predict whether, and to what degree, the rate of each reaction can be resolved.


Molecular Systems Biology | 2014

Minimal metabolic pathway structure is consistent with associated biomolecular interactions.

Aarash Bordbar; Harish Nagarajan; Nathan E. Lewis; Haythem Latif; Ali Ebrahim; Stephen Federowicz; Jan Schellenberger; Bernhard O. Palsson

Pathways are a universal paradigm for functionally describing cellular processes. Even though advances in high‐throughput data generation have transformed biology, the core of our biological understanding, and hence data interpretation, is still predicated on human‐defined pathways. Here, we introduce an unbiased, pathway structure for genome‐scale metabolic networks defined based on principles of parsimony that do not mimic canonical human‐defined textbook pathways. Instead, these minimal pathways better describe multiple independent pathway‐associated biomolecular interaction datasets suggesting a functional organization for metabolism based on parsimonious use of cellular components. We use the inherent predictive capability of these pathways to experimentally discover novel transcriptional regulatory interactions in Escherichia coli metabolism for three transcription factors, effectively doubling the known regulatory roles for Nac and MntR. This study suggests an underlying and fundamental principle in the evolutionary selection of pathway structures; namely, that pathways may be minimal, independent, and segregated.

Collaboration


Dive into the Jan Schellenberger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aarash Bordbar

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam M. Feist

University of California

View shared research outputs
Top Co-Authors

Avatar

Ines Thiele

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph Kang

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge