Jan Schmoranzer
Free University of Berlin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Schmoranzer.
Nature Cell Biology | 2004
Ying Wen; Christina H. Eng; Jan Schmoranzer; Noemi Cabrera-Poch; Edward J. S. Morris; Michael Chen; Bradley J. Wallar; Arthur S. Alberts; Gregg G. Gundersen
Lysophosphatidic acid (LPA) stimulates Rho GTPase and its effector, the formin mDia, to capture and stabilize microtubules in fibroblasts. We investigated whether mammalian EB1 and adenomatous polyposis coli (APC) function downstream of Rho–mDia in microtubule stabilization. A carboxy-terminal APC-binding fragment of EB1 (EB1-C) functioned as a dominant-negative inhibitor of microtubule stabilization induced by LPA or active mDia. Knockdown of EB1 with small interfering RNAs also prevented microtubule stabilization. Expression of either full-length EB1 or APC, but not an APC-binding mutant of EB1, was sufficient to stabilize microtubules. Binding and localization studies showed that EB1, APC and mDia may form a complex at stable microtubule ends. Furthermore, EB1-C, but not an APC-binding mutant, inhibited fibroblast migration in an in vitro wounding assay. These results show an evolutionarily conserved pathway for microtubule capture, and suggest that mDia functions as a scaffold protein for EB1 and APC to stabilize microtubules and promote cell migration.
Nature Cell Biology | 2003
Geri Kreitzer; Jan Schmoranzer; Seng Hui Low; Xin Li; Yunbo Gan; Thomas Weimbs; Sanford M. Simon; Enrique Rodriguez-Boulan
Targeted delivery of proteins to distinct plasma membrane domains is critical to the development and maintenance of polarity in epithelial cells. We used confocal and time-lapse total internal reflection fluorescence microscopy (TIR-FM) to study changes in localization and exocytic sites of post-Golgi transport intermediates (PGTIs) carrying GFP-tagged apical or basolateral membrane proteins during epithelial polarization. In non-polarized Madin Darby Canine Kidney (MDCK) cells, apical and basolateral PGTIs were present throughout the cytoplasm and were observed to fuse with the basal domain of the plasma membrane. During polarization, apical and basolateral PGTIs were restricted to different regions of the cytoplasm and their fusion with the basal membrane was completely abrogated. Quantitative analysis suggested that basolateral, but not apical, PGTIs fused with the lateral membrane in polarized cells, correlating with the restricted localization of Syntaxins 4 and 3 to lateral and apical membrane domains, respectively. Microtubule disruption induced Syntaxin 3 depolarization and fusion of apical PGTIs with the basal membrane, but affected neither the lateral localization of Syntaxin 4 or Sec6, nor promoted fusion of basolateral PGTIs with the basal membrane.
Nature | 2013
York Posor; Marielle Eichhorn-Gruenig; Dmytro Puchkov; Johannes Schöneberg; Alexander Ullrich; André Lampe; Rainer Müller; Sirus Zarbakhsh; Federico Gulluni; Emilio Hirsch; Michael Krauss; Carsten Schultz; Jan Schmoranzer; Frank Noé; Volker Haucke
Phosphoinositides serve crucial roles in cell physiology, ranging from cell signalling to membrane traffic. Among the seven eukaryotic phosphoinositides the best studied species is phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), which is concentrated at the plasma membrane where, among other functions, it is required for the nucleation of endocytic clathrin-coated pits. No phosphatidylinositol other than PI(4,5)P2 has been implicated in clathrin-mediated endocytosis, whereas the subsequent endosomal stages of the endocytic pathway are dominated by phosphatidylinositol-3-phosphates(PI(3)P). How phosphatidylinositol conversion from PI(4,5)P2-positive endocytic intermediates to PI(3)P-containing endosomes is achieved is unclear. Here we show that formation of phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) by class II phosphatidylinositol-3-kinase C2α (PI(3)K C2α) spatiotemporally controls clathrin-mediated endocytosis. Depletion of PI(3,4)P2 or PI(3)K C2α impairs the maturation of late-stage clathrin-coated pits before fission. Timed formation of PI(3,4)P2 by PI(3)K C2α is required for selective enrichment of the BAR domain protein SNX9 at late-stage endocytic intermediates. These findings provide a mechanistic framework for the role of PI(3,4)P2 in endocytosis and unravel a novel discrete function of PI(3,4)P2 in a central cell physiological process.
Journal of Cell Biology | 2008
Francesca Bartolini; James B. Moseley; Jan Schmoranzer; Lynne Cassimeris; Bruce L. Goode; Gregg G. Gundersen
A critical microtubule (MT) polarization event in cell migration is the Rho/mDia-dependent stabilization of a subset of MTs oriented toward the direction of migration. Although mDia nucleates actin filaments, it is unclear whether this or a separate activity of mDia underlies MT stabilization. We generated two actin mutants (K853A and I704A) in a constitutively active version of mDia2 containing formin homology domains 1 and 2 (FH1FH2) and found that they still induced stable MTs and bound to the MT TIP proteins EB1 and APC, which have also been implicated in MT stabilization. A dimerization-impaired mutant of mDia2 (W630A) also generated stable MTs in cells. We examined whether FH1FH2mDia2 had direct activity on MTs in vitro and found that it bound directly to MTs, stabilized MTs against cold- and dilution-induced disassembly, and reduced the rates of growth and shortening during MT assembly and disassembly, respectively. These results indicate that mDia2 has a novel MT stabilization activity that is separate from its actin nucleation activity.
Journal of Cell Science | 2003
Jan Schmoranzer; Geri Kreitzer; Sanford M. Simon
Cell migration might involve biased membrane traffic toward the leading edge to facilitate the building of extracellular matrix, membrane protrusions and adhesion plaques. We tested the hypothesis that secretory vesicles are preferentially delivered toward the leading lamella in wound-edge fibroblasts. Single fusion events of vesicles containing LDLR-GFP were mapped by total internal reflection fluorescence microscopy (TIR-FM). In migrating fibroblasts, exocytic events were polarized towards the leading edge. After disrupting microtubules with nocodazole, exocytosis continued, but fusion sites were clustered around central Golgi elements; there was no peripheral exocytosis. We conclude that microtubules are necessary for the domain-specific fusion of post-Golgi vesicles with the plasma membrane during migration.
Current Biology | 2009
Jan Schmoranzer; James P. Fawcett; Miriam Segura; Serena Tan; Richard B. Vallee; Tony Pawson; Gregg G. Gundersen
BACKGROUND Centrosome orientation toward the leading edge of migrating cells depends on dynein and microtubules (MTs), as well as a number of signaling factors at the leading edge. However, centrosomes are maintained at the cell center during orientation in fibroblasts, suggesting that factors working at sites other than the leading edge may also be involved. RESULTS In a search for factors that function with dynein in centrosome orientation, we found that the polarity protein Par3 associated with dynein and that knockdown of Par3 inhibited centrosome orientation by disrupting the position of the centrosome at the cell center; this disrupted centrosome positioning is the same phenotype as that observed with dynein inhibition. Par3 associated with dynein through its N-terminal dimerization and PDZ1 domains and interacted specifically with dynein light intermediate chain 2 (LIC2). siRNA knockdown of LIC2, but not LIC1, or overexpression of LIC2 or the N-terminal domain of Par3, also inhibited centrosome orientation by disrupting centrosome position. In wound-edge fibroblasts, Par3 specifically localized to cell-cell contacts where it overlapped with MT ends and dynein puncta in a LIC2-dependent fashion. Live imaging showed that MTs exhibited increased pausing at cell-cell contacts compared to the leading edge and that this elevated pausing was dependent on Par3 and LIC2. CONCLUSIONS Par3 associates with dynein and contributes to the local regulation of MT dynamics at cell-cell contacts and proper positioning of the centrosome at the cell center. We propose that Par3 acts as a cortical factor that tethers MTs through its association with LIC2 dynein.
Biology of the Cell | 2012
André Lampe; Volker Haucke; Stephan J. Sigrist; Mike Heilemann; Jan Schmoranzer
Single molecule‐based super‐resolution methods have become important tools to study nanoscale structures in cell biology. However, the complexity of multi‐colour applications has prevented them from being widely used amongst biologists. Direct stochastic optical reconstruction microscopy (dSTORM) offers a simple way to perform single molecule super‐resolution imaging without the need for an activator fluorophore and compatible with many conventionally used fluorophores. The search for the ideal dye pairs suitable for dual‐colour dSTORM has been compromised by the fact that fluorophores spectrally apt for dual‐colour imaging differ with respect to the optimal buffer conditions required for photoswitching and the generation of prolonged non‐fluorescent (OFF) states.
Neuron | 2015
Seong Joo Koo; Gaga Kochlamazashvili; Benjamin R. Rost; Dmytro Puchkov; Niclas Gimber; Martin Lehmann; Georgi Tadeus; Jan Schmoranzer; Christian Rosenmund; Volker Haucke; Tanja Maritzen
Neurotransmission depends on synaptic vesicle (SV) exocytosis driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation of vesicular synaptobrevin/VAMP2 (Syb2). Exocytic fusion is followed by endocytic SV membrane retrieval and the high-fidelity reformation of SVs. Syb2 is the most abundant SV protein with 70 copies per SV, yet, one to three Syb2 molecules appear to be sufficient for basal exocytosis. Here we demonstrate that loss of the Syb2-specific endocytic adaptor AP180 causes a moderate activity-dependent reduction of vesicular Syb2 levels, defects in SV reformation, and a corresponding impairment of neurotransmission that lead to excitatory/inhibitory imbalance, epileptic seizures, and premature death. Further reduction of Syb2 levels in AP180(-/-)/Syb2(+/-) mice results in perinatal lethality, whereas Syb2(+/-) mice partially phenocopy loss of AP180, indicating that reduced vesicular Syb2 levels underlie the observed defects in neurotransmission. Thus, a large vesicular Syb2 pool maintained by AP180 is crucial to sustain efficient neurotransmission and SV reformation.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Takeshi Sakaba; Natalia L. Kononenko; Jelena Bacetic; Arndt Pechstein; Jan Schmoranzer; Lijun Yao; Holger Barth; Oleg Shupliakov; Oliver Kobler; Klaus Aktories; Volker Haucke
Sustained fast neurotransmission requires the rapid replenishment of release-ready synaptic vesicles (SVs) at presynaptic active zones. Although the machineries for exocytic fusion and for subsequent endocytic membrane retrieval have been well characterized, little is known about the mechanisms underlying the rapid recruitment of SVs to release sites. Here we show that the Down syndrome-associated endocytic scaffold protein intersectin 1 is a crucial factor for the recruitment of release-ready SVs. Genetic deletion of intersectin 1 expression or acute interference with intersectin function inhibited the replenishment of release-ready vesicles, resulting in short-term depression, without significantly affecting the rate of endocytic membrane retrieval. Acute perturbation experiments suggest that intersectin-mediated vesicle replenishment involves the association of intersectin with the fissioning enzyme dynamin and with the actin regulatory GTPase CDC42. Our data indicate a role for the endocytic scaffold intersectin in fast neurotransmitter release, which may be of prime importance for information processing in the brain.
Nature Communications | 2015
Niclas Gimber; Georgi Tadeus; Tanja Maritzen; Jan Schmoranzer; Volker Haucke
Neurotransmission relies on the calcium-triggered exocytic fusion of non-peptide neurotransmitter-containing small synaptic vesicles (SVs) with the presynaptic membrane at active zones (AZs) followed by compensatory endocytic retrieval of SV membranes. Here, we study the diffusional fate of newly exocytosed SV proteins in hippocampal neurons by high-resolution time-lapse imaging. Newly exocytosed SV proteins rapidly disperse within the first seconds post fusion until confined within the presynaptic bouton. Rapid diffusional spread and confinement is followed by slow reclustering of SV proteins at the periactive endocytic zone. Confinement within the presynaptic bouton is mediated in part by SV protein association with the clathrin-based endocytic machinery to limit diffusional spread of newly exocytosed SV proteins. These data suggest that diffusion, and axonal escape of newly exocytosed vesicle proteins, are counteracted by the clathrin-based endocytic machinery together with a presynaptic diffusion barrier.