Jan Skoda
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Skoda.
Analytical Cellular Pathology | 2011
Jiri Sana; Iva Zambo; Jan Skoda; Jakub Neradil; Petr Chlapek; Markéta Hermanová; Peter Múdry; Alzbeta Vasikova; Karel Zitterbart; Aleš Hampl; Jaroslav Sterba; Renata Veselská
Background: Co-expression of CD133, cell surface glycoprotein, and nestin, an intermediate filament protein, was determined to be a marker of neural stem cells and of cancer stem cells in neurogenic tumors. Methods: We examined the expression of CD133 and nestin in ten tumor tissue samples taken from patients with rhabdomyosarcomas and in five rhabdomyosarcoma cell lines. Immunohistochemistry and immunofluorescence were used to examine FFPE tumor tissue samples. Cell lines were analyzed by immunofluorescence, immunoblotting, flow cytometry, and RT-PCR. Functional assays (clonogenic in vitro assay and tumorigenic in vivo assay) were also performed using these cell lines. Results: CD133 and nestin were detected in all 10 tumor tissue samples and in all 5 cell lines; however, the frequency of CD133+, Nes+, and CD133+/Nes+ cells, as well as the intensity of fluorescence varied in individual samples or cell lines. The expression of CD133 and nestin was subsequently confirmed in all cell lines by immunoblotting. Furthermore, we observed an increasing expression of CD133 in relation to the cultivation. All cell lines were positive for Oct3/4 and nucleostemin; NSTS-11 cells were also able to form xenograft tumors in mice. Conclusion: Our results represent the first evidence of CD133 expression in rhabdomyosarcoma tissue and in rhabdomyosarcoma cell lines. In addition, the co-expression of CD133 and nestin as well as results of the functional assays suggest a possible presence of cancer cells with a stem-like phenotype in these tumors.
PLOS ONE | 2016
Jan Skoda; Markéta Hermanová; Tomáš Loja; Pavel Nemec; Jakub Neradil; Petr Karasek; Renata Veselská
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies. Its dismal prognosis is often attributed to the presence of cancer stem cells (CSCs) that have been identified in PDAC using various markers. However, the co-expression of all of these markers has not yet been evaluated. Furthermore, studies that compare the expression levels of CSC markers in PDAC tumor samples and in cell lines derived directly from those tumors are lacking. Here, we analyzed the expression of putative CSC markers—CD24, CD44, epithelial cell adhesion molecule (EpCAM), CD133, and nestin—by immunofluorescence, flow cytometry and quantitative PCR in 3 PDAC-derived cell lines and by immunohistochemistry in 3 corresponding tumor samples. We showed high expression of the examined CSC markers among all of the cell lines and tumor samples, with the exception of CD24 and CD44, which were enriched under in vitro conditions compared with tumor tissues. The proportions of cells positive for the remaining markers were comparable to those detected in the corresponding tumors. Co-expression analysis using flow cytometry revealed that CD24+/CD44+/EpCAM+/CD133+ cells represented a significant population of the cells (range, 43 to 72%) among the cell lines. The highest proportion of CD24+/CD44+/EpCAM+/CD133+ cells was detected in the cell line derived from the tumor of a patient with the shortest survival. Using gene expression profiling, we further identified the specific pro-tumorigenic expression profile of this cell line compared with the profiles of the other two cell lines. Together, CD24+/CD44+/EpCAM+/CD133+ cells are present in PDAC cell lines derived from primary tumors, and their increased proportion corresponds with a pro-tumorigenic gene expression profile.
Tumor Biology | 2016
Jan Skoda; Alena Nunukova; Tomáš Loja; Iva Zambo; Jakub Neradil; Peter Múdry; Karel Zitterbart; Markéta Hermanová; Aleš Hampl; Jaroslav Sterba; Renata Veselská
The three most frequent pediatric sarcomas, i.e., Ewing’s sarcoma, osteosarcoma, and rhabdomyosarcoma, were examined in this study: three cell lines derived from three primary tumor samples were analyzed from each of these tumor types. Detailed comparative analysis of the expression of three putative cancer stem cell markers related to sarcomas—ABCG2, CD133, and nestin—was performed on both primary tumor tissues and corresponding cell lines. The obtained results showed that the frequency of ABCG2-positive and CD133-positive cells was predominantly increased in the respective cell lines but that the high levels of nestin expression were reduced in both osteosarcomas and rhabdomyosarcomas under in vitro conditions. These findings suggest the selection advantage of cells expressing ABCG2 or CD133, but the functional tests in NOD/SCID gamma mice did not confirm the tumorigenic potential of cells harboring this phenotype. Subsequent analysis of the expression of common stem cell markers revealed an evident relationship between the expression of the transcription factor Sox2 and the tumorigenicity of the cell lines in immunodeficient mice: the Sox2 levels were highest in the two cell lines that were demonstrated as tumorigenic. Furthermore, Sox2-positive cells were found in the respective primary tumors and all xenograft tumors showed apparent accumulation of these cells. All of these findings support our conclusion that regardless of the expression of ABCG2, CD133 and nestin, only cells displaying increased Sox2 expression are directly involved in tumor initiation and growth; therefore, these cells fit the definition of the cancer stem cell phenotype.
International Journal of Molecular Medicine | 2015
Alena Nunukova; Jakub Neradil; Jan Skoda; Josef Jaroš; Aleš Hampl; Jaroslav Sterba; Renata Veselská
CD133 (also known as prominin-1) is a cell surface glycoprotein that is widely used for the identification of stem cells. Furthermore, its glycosylated epitope, AC133, has recently been discussed as a marker of cancer stem cells in various human malignancies. During our recent experiments on rhabdomyosarcomas (RMS), we unexpectedly identified an atypical nuclear localization of CD133 in a relatively stable subset of cells in five RMS cell lines established in our laboratory. To the best of our knowledge, this atypical localization of CD133 has not yet been proven or analyzed in detail in cancer cells. In the present study, we verified the nuclear localization of CD133 in RMS cells using three independent anti-CD133 antibodies, including both rabbit polyclonal and mouse monoclonal antibodies. Indirect immunofluorescence and confocal microscopy followed by software cross-section analysis, transmission electron microscopy and cell fractionation with immunoblotting were also employed, and all the results undeniably confirmed the presence of CD133 in the nuclei of stable minor subpopulations of all five RMS cell lines. The proportion of cells showing an exclusive nuclear localization of CD133 ranged from 3.4 to 7.5%, with only minor differences observed among the individual anti-CD133 antibodies. Although the role of CD133 in the cell nucleus remains unclear, these results clearly indicate that this atypical nuclear localization of CD133 in a minor subpopulation of cancer cells is a common phenomenon in RMS cell lines.
Cancer Biomarkers | 2016
Iva Zambo; Markéta Hermanová; Danica Zapletalová; Jan Skoda; Peter Múdry; Michal Kyr; Karel Zitterbart; Jaroslav Sterba; Renata Veselská
BACKGROUND Nestin, CD133 and ABCG2 are recently discussed as putative markers, co-expression of which might determine a cancer stem cell (CSC) phenotype in sarcomas. OBJECTIVE Our study is focused on immunohistochemical analysis of nestin, CD133 and ABCG2 expression in rhabdomyosarcoma, Ewing sarcoma and osteosarcoma. Furthermore, we also analyzed the possible correlation of nestin, CD133 and ABCG2 expression levels with the patient outcome to identify potential prognostic values of these three putative CSC markers in the same cohorts. METHODS Using immunohistochemistry, expression of nestin, CD133 and ABCG2 was analyzed in 24 rhabdomyosarcoma, 22 Ewing sarcoma and 10 osteosarcoma tissue samples and expression levels of these markers were correlated with clinical outcome. RESULTS High nestin levels indicate poor prognosis in patients with Ewing sarcoma (P = 0.001), and high CD133 expression is associated with shorter survival in rhabdomyosarcoma patients (P = 0.002). In contrast, no significant relationship was found between ABCG2 expression and the clinical outcome. CONCLUSIONS Our analysis represents the first complex study of these three putative CSCs markers together in three different types of pediatric sarcomas and showed their possible prognostic values in these tumors.
Oncology Reports | 2014
Jan Skoda; Jakub Neradil; Karel Zitterbart; Jaroslav Sterba; Renata Veselská
Epidermal growth factor receptor (EGFR) gene amplification and the overexpression of EGFR are described as common features of glioblastoma multiforme (GBM). Nevertheless, we previously reported the loss of EGFR gene copy in a GBM specimen from a patient with an unusually favorable course of the disease, and the HGG-02 cell line with this aberration was successfully derived from this tumor. Here, we present a detailed analysis of changes in gene expression and cell signaling in the HGG-02 cell line; the GM7 reference cell line with a standard EGFR gene copy number derived from a very aggressive GBM was used as a control. We confirmed the downregulation of EGFR expression and signaling in HGG-02 cells using different methods (RTK analysis, gene profiling and RT-PCR). Other changes that may have contributed to the non-aggressive phenotype of the primary tumor were identified, including the downregulated phosphorylation of the Axl and Trk receptors, as well as increased activity of JNK and p38 kinases. Notably, differences in PDGF signaling were detected in both of these cell lines; HGG-02 cells preferentially expressed and signaled through PDGFRα, and PDGFRβ was strongly overexpressed and phosphorylated in the GM7 reference cell line. Using expression profiling of cancer-related genes, we revealed the specific profile of HGG-02 cells that included upregulated tumor-suppressors as well as downregulated genes associated with the extracellular matrix. This study represents the first comprehensive analysis of gene expression and cell signaling in glioblastoma cells with lower EGFR gene dosage. As indicated by our results, the TAM receptors, Trk receptors and PDGFRs need to be investigated further since their regulation appears to be important for glioblastoma biological features as well as the clinical course of the disease.
International Journal of Molecular Sciences | 2016
Zbynek Heger; Jaromír Gumulec; Ales Ondrak; Jan Skoda; Zdenek Zitka; Natalia Cernei; Michal Masarik; Ondrej Zitka; Vojtech Adam
Herein, we present a study focused on the determination of the influence of long-distance (53 km) bicycle riding on levels of chosen biochemical urinary and serum prostate cancer (PCa) biomarkers total prostate-specific antigen (tPSA), free PSA (fPSA) and sarcosine. Fourteen healthy participants with no evidence of prostate diseases, in the age range from 49–57 years with a median of 52 years, underwent physical exercise (mean race time of 150 ± 20 min, elevation increase of 472 m) and pre- and post-ride blood/urine sampling. It was found that bicycle riding resulted in elevated serum uric acid (p = 0.001, median 271.76 vs. 308.44 µmol/L pre- and post-ride, respectively), lactate (p = 0.01, median 2.98 vs. 4.8 mmol/L) and C-reactive protein (p = 0.01, 0.0–0.01 mg/L). It is noteworthy that our work supports the studies demonstrating an increased PSA after mechanical manipulation of the prostate. The subjects exhibited either significantly higher post-ride tPSA (p = 0.002, median 0.69 vs. 1.1 ng/mL pre- and post-ride, respectively) and fPSA (p = 0.028, median 0.25 vs. 0.35 ng/mL). Contrary to that, sarcosine levels were not significantly affected by physical exercise (p = 0.20, median 1.64 vs. 1.92 µmol/mL for serum sarcosine, and p = 0.15, median 0.02 µmol/mmol of creatinine vs. 0.01 µmol/mmol of creatinine for urinary sarcosine). Taken together, our pilot study provides the first evidence that the potential biomarker of PCa—sarcosine does not have a drawback by means of a bicycle riding-induced false positivity, as was shown in the case of PSA.
Molecules | 2018
Zaneta Buchtova; Zuzana Lackova; Jiri Kudr; Zdenek Zitka; Jan Skoda; Ondrej Zitka
Glutathione (γ-glutamyl-cysteinyl-glycine; also known as GSH) is an endogenous antioxidant that plays a crucial role in cell defense mechanisms against oxidative stress. It is thus not surprising that this molecule can serve as a biomarker for oxidative stress monitoring. As capillary blood is a highly accessible target for biomarking, it is a valuable bodily fluid for diagnosing human GSH levels. This study focused on the optimization of GSH measurements from micro volumes of capillary blood prior to using electrochemical detection. The optimization of experimental parameters, including the sample volume and its stability, was performed and evaluated. Moreover, we tested the optimized method as part of a short-term study. The study consisted of examining 10 subjects within 96 h of their consumption of high amounts of antioxidants, attained from a daily dose of 2 g/150 mL of green tea. The subjects’ capillary blood (5 μL) was taken at 0 h, 48 h, and 96 h for subsequent analysis. The short-term supplementation of diet with green tea showed an increase of GSH pool by approximately 38% (between 0 and 48 h) within all subjects.
Biochimica et Biophysica Acta | 2018
Jan Skoda; Renata Veselská
BACKGROUND Sarcomas are rare tumors but represent the third most common malignancy in children. The cancer stem cell (CSC) paradigm is well established, and CSCs have been intensively studied in sarcomas in the past decade. SCOPE OF REVIEW This review summarizes current knowledge on CSCs in sarcomas and provides new perspectives on the role of a deregulated stemness program in sarcomagenesis. MAJOR CONCLUSIONS Cell surface markers have so far failed to specifically target sarcoma CSCs. Sarcomas likely arise from immature cells that undergo pathological reprogramming. Transcription factor Sox2, which is frequently upregulated in sarcomas, is directly involved in this process, and its crucial role in the acquisition and maintenance of the CSC phenotype has been demonstrated in various sarcomas. GENERAL SIGNIFICANCE Sox2 is a core functional regulator of the stem-like state and is an outstanding marker of sarcoma CSCs. Fluorescence protein-based reporters of Sox2 expression might provide useful tools for subsequent studies of sarcoma CSCs.
Klinická onkologie : casopis Ceské a Slovenské onkologické spolecnosti | 2012
Renata Veselská; Jakub Neradil; Jan Skoda