Ján Stariat
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ján Stariat.
Chemical Research in Toxicology | 2011
Katerina Hruskova; Petra Kovarikova; Petra Bendova; Pavlína Hašková; Eliška Macková; Ján Stariat; Anna Vávrová; Katerina Vavrova; Tomas Simunek
Oxidative stress is known to contribute to a number of cardiovascular pathologies. Free intracellular iron ions participate in the Fenton reaction and therefore substantially contribute to the formation of highly toxic hydroxyl radicals and cellular injury. Earlier work on the intracellular iron chelator salicylaldehyde isonicotinoyl hydrazone (SIH) has demonstrated its considerable promise as an agent to protect the heart against oxidative injury both in vitro and in vivo. However, the major limitation of SIH is represented by its labile hydrazone bond that makes it prone to plasma hydrolysis. Hence, in order to improve the hydrazone bond stability, nine compounds were prepared by a substitution of salicylaldehyde by the respective methyl- and ethylketone with various electron donors or acceptors in the phenyl ring. All the synthesized aroylhydrazones displayed significant iron-chelating activities and eight chelators showed significantly higher stability in rabbit plasma than SIH. Furthermore, some of these chelators were observed to possess higher cytoprotective activities against oxidative injury and/or lower toxicity as compared to SIH. The results of the present study therefore indicate the possible applicability of several of these novel agents in the prevention and/or treatment of cardiovascular disorders with a known (or presumed) role of oxidative stress. In particular, the methylketone HAPI and nitro group-containing NHAPI merit further in vivo investigations.
Journal of Chromatography A | 2011
Petra Kovaříková; Ján Stariat; Jiří Klimeš; Kateřina Hrušková; Kateřina Vávrová
This paper presents a systematic study of the retention behavior of a model bisdioxopiperazine drug, dexrazoxane (DEX) and its three polar metabolites (two single open-ring intermediates-B and C and an EDTA-like active compound ADR-925) on different stationary phases intended for hydrophilic interaction liquid chromatography (HILIC). The main aim was to estimate advantages and limitations of HILIC in the simultaneous analysis of a moderately lipophilic parent drug and its highly polar metabolites, including positional isomers, under MS compatible conditions. The study involved two bare silica columns (Ascentic Express HILIC, Atlantis HILIC) and two stationary phases with distinct zwitterionic properties (Obelisc N and ZIC HILIC). The chromatographic conditions (mobile phase strength and pH, column temperature) were systematically modified to assess their impact on retention and separation of the studied compounds. It was found that the bare silica phases were unable to separate the positional isomers (intermediates B and C), whereas both columns with zwitterionic properties (Obelisc N and ZIC HILIC) were able to separate these structurally very similar compounds. However, only ZIC HILIC phase allowed appropriate separation of DEX and all its metabolites to a base line within a single run. A mobile phase composed of a mixture of ammonium formate (0.5 mM) and acetonitrile (25:75, v/v) was suggested as optimal for the simultaneous analysis of DEX and its metabolites on ZIC HILIC. Thereafter, HILIC-LC-MS analysis of DEX and all its metabolites was performed for the first time to obtain basic data about the applicability of the suggested chromatographic conditions. Hence, this study demonstrates that HILIC could be a viable solution for the challenging analysis of moderately polar parent drug along with its highly polar metabolites including the ability to separate structurally very similar compounds, such as positional isomers.
Journal of Chromatography B | 2009
Ján Stariat; Petra Kovaříková; Jiří Klimeš; David B. Lovejoy; Danuta S. Kalinowski; Des R. Richardson
The aim of this study was to develop and validate HPLC methods for the determination in plasma of two novel thiosemicarbazone anti-tumour drugs developed in our laboratories (Dp44mT and N4mT). The appropriate separations were achieved using a HS F5 HPLC column with the mobile phase composed of a mixture of either acetate buffer/EDTA or EDTA and acetonitrile (62:38 and 50:50, v/v, respectively). The plasma samples were pretreated with SPE (phenyl and C18, respectively). Furthermore, these methods were successfully applied to in vitro plasma stability experiments. The investigation has clearly shown that both thiosemicarbazones are markedly more stable in plasma than their aroylhydrazone forerunners.
Analytical and Bioanalytical Chemistry | 2012
Ján Stariat; Vít Šesták; Kateřina Vávrová; Milan Nobilis; Zuzana Kollárová; Jiří Klimeš; Danuta S. Kalinowski; Des R. Richardson; Petra Kovaříková
AbstractThe iron chelator, 2-benzoylpyridine-4-ethyl-3-thiosemicarbazone (Bp4eT), was identified as a lead compound of the 2-benzoylpyridine thiosemicarbazone series, which were designed as potential anti-cancer agents. This ligand has been shown to possess potent anti-proliferative activity with a highly selective mechanism of action. However, further progress in the development of this compound requires data regarding its metabolism in mammals. The aim of this study was to identify the main in vitro and in vivo phase I metabolites of Bp4eT using liquid chromatography tandem mass spectrometry (LC-MS/MS). Two metabolites were detected after incubation of this drug with rat and human liver microsomal fractions. Based on LC-MSn analysis, the metabolites were demonstrated to be 2-benzoylpyridine-4-ethyl-3-semicarbazone and N3-ethyl-N1-[phenyl(pyridin-2-yl)methylene]formamidrazone, with both resulting from the oxidation of the thiocarbonyl group. The identity of these metabolites was further shown by LC-MS/MS analysis of these latter compounds which were prepared by oxidation of Bp4eT with hydrogen peroxide and their structures confirmed by nuclear magnetic resonance and infrared spectra. Both the semicarbazone and the amidrazone metabolites were detected in plasma, urine, and feces after i.v. administration of Bp4eT to rats. In addition, another metabolite that could correspond to hydroxylated amidrazone was found in vivo. Thus, oxidative pathways play a major role in the phase I metabolism of this promising anti-tumor agent. The outcomes of this study will be further utilized for: (1) the development and validation of the analytical method for the quantification of Bp4eT and its metabolites in biological materials; (2) to design pharmacokinetic experiments; and to (3) evaluate the potential contribution of the individual metabolites to the pharmacodynamics/toxico-dynamics of this novel anti-proliferative agent.n Figurea LC-MS chromatogram of the analysis of the sample from in vivo experiment, b proposed metabolic pathway of Bp4eT and c MS/MS fragmentation of the parent compound and metabolites M1-M3
Oncotarget | 2015
Vít Šesták; Ján Stariat; Jolana Cermanova; Eliska Potuckova; Jaroslav Chládek; Jaroslav Roh; Jan Bures; Hana Jansová; Petr Prusa; Martin Sterba; Stanislav Micuda; Tomas Simunek; Danuta S. Kalinowski; Des R. Richardson; Petra Kovarikova
Di(2-pyridyl)ketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di(2-pyridyl)ketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) are novel, highly potent and selective anti-tumor and anti-metastatic drugs. Despite their structural similarity, these agents differ in their efficacy and toxicity in-vivo. Considering this, a comparison of their pharmacokinetic and pharmaco/toxico-dynamic properties was conducted to reveal if these factors are involved in their differential activity. Both compounds were administered to Wistar rats intravenously (2 mg/kg) and their metabolism and disposition were studied using UHPLC-MS/MS. The cytotoxicity of both thiosemicarbazones and their metabolites was also examined using MCF-7, HL-60 and HCT116 tumor cells and 3T3 fibroblasts and H9c2 cardiac myoblasts. Their intracellular iron-binding ability was characterized by the Calcein-AM assay and their iron mobilization efficacy was evaluated. In contrast to DpC, Dp44mT undergoes rapid demethylation in-vivo, which may be related to its markedly faster elimination (T1/2 = 1.7 h for Dp44mT vs. 10.7 h for DpC) and lower exposure. Incubation of these compounds with cancer cells or cardiac myoblasts did not result in any significant metabolism in-vitro. The metabolism of Dp44mT in-vivo resulted in decreased anti-cancer activity and toxicity. In conclusion, marked differences in the pharmacology of Dp44mT and DpC were observed and highlight the favorable pharmacokinetics of DpC for cancer treatment.
Journal of Separation Science | 2011
Ivana Pasáková; Marcela Gladziszová; Jana Charvátová; Ján Stariat; Jiří Klimeš; Petra Kovaříková
The ability of different stationary phases developed for the analysis of polar compounds (ZIC-HILIC, ZIC-pHILIC and Zorbax SB-Aq) to separate isoniazid, its metabolites (acetylisonazid, pyridoxal isonicotinoyl hydrazone, pyridoxal isonicotinoyl hydrazone 5-phosphate), pyridoxine, pyridoxal and pyridoxal 5-phosphate under MS compatible conditions was systematically investigated using HPLC-UV. The mobile phase strength, pH and buffer concentration were modified to assess their impact on the retention of these compounds. The best available separation of the compounds was achieved using 1 mM ammonium formate (pH≈6) and ACN (20:80, v/v) on ZIC-HILIC and employing 5 mM ammonium formate (pH 3.0) and ACN (40:60, v/v) on ZIC-pHILIC. A gradient profile using 0.5 mM ammonium formate (pH≈6) and MeOH (0-12 min: 10% MeOH, 12-15 min: 10-50% MeOH, 15-35 min: 50% MeOH, 35.0-35.2 min: 50-10% MeOH, 35.2-45.0 min: 10% MeOH) provided the best separation of the compounds on Zorbax SB-Aq. Subsequent LC-MS analysis demonstrated that ZIC-HILIC is useful for the analysis of pyridoxine, pyridoxal and pyridoxal isonicotinoyl hydrazone. However, the chromatographic conditions developed for the analysis of the compounds on Zorbax SB-Aq are capable of achieving the best separation of all compounds in this study with the higher sensitivity for most of the analytes.
Biomedical Chromatography | 2014
Ján Stariat; Vlasta Suprunová; Jaroslav Roh; Vít Šesták; Tomáš Eisner; Tomáš Filipský; Přemysl Mladěnka; Milan Nobilis; Tomáš Šimůnek; Jiří Klimeš; Danuta S. Kalinowski; Des R. Richardson; Petra Kovaříková
Novel thiosemicarbazone metal chelators are extensively studied anti-cancer agents with marked and selective activity against a wide variety of cancer cells, as well as human tumor xenografts in mice. This study describes the first validated LC-MS/MS method for the simultaneous quantification of 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT) and its main metabolites (E/Z isomers of the semicarbazone structure, M1-E and M1-Z, and the amidrazone metabolite, M2) in plasma. Separation was achieved using a C18 column with ammonium formate/acetonitrile mixture as the mobile phase. Plasma samples were treated using solid-phase extraction on 96-well plates. This method was validated over the concentration range of 0.18-2.80 μM for Bp4eT, 0.02-0.37 μM for both M1-E and M1-Z, and 0.10-1.60 μM for M2. This methodology was applied to the analysis of samples from in vivo experiments, allowing for the concentration-time profile to be simultaneously assessed for the parent drug and its metabolites. The current study addresses the lack of knowledge regarding the quantitative analysis of thiosemicarbazone anti-cancer drugs and their metabolites in plasma and provides the first pharmacokinetic data on a lead compound of this class.
Analytical and Bioanalytical Chemistry | 2010
Ján Stariat; Petra Kovaříková; Jiří Klimeš; Danuta S. Kalinowski; Des R. Richardson
AbstractThis study was focused on a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method development for quantification of a novel potential anticancer agent, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), in aqueous media. Solid Bp4eT was found to consist predominantly of the Z isomer, while in aqueous media, both isomers coexist. Sufficient separation of both isomers was achieved on a Synergi 4u Polar RP column with a mobile phase composed of 2xa0mM ammonium formate, acetonitrile, and methanol (30:63:7; v/v/v). The photo diode array analysis of both isomers demonstrated different absorption spectra which hindered UV-based quantification. However, an equal and reproducible response was found for both isomers using an MS detector, which enables the determination of the total content of Bp4eT (i.e., both E− and Z− isomeric forms) by summation of the peak areas of both isomers. 2-Hydroxy-1-naphthylaldehyde 4-methyl-3-thiosemicarbazone (N4mT) was selected as the internal standard. Quantification was performed in selective reaction monitoring using the main fragments of [M+H]+ (240u2009m/z for Bp4eT and 229u2009m/z for N4mT). The method was validated over 20–600xa0ng/ml. This procedure was applied to a preformulation study to determine the proper vehicle for parenteral administration. It was found that Bp4eT was poorly soluble in aqueous media. However, the solubility can be effectively improved using pharmaceutical cosolvents. In fact, a 1:1 mixture of PEG 300/0.14xa0M saline markedly increased solubility and may be a useful drug formulation for intravenous administration. This investigation further accelerates development of novel anticancer thiosemicarbazones. The described methods will be useful for analogs currently under development and suffering the same analytical issue.n FigureChromatogram of the LC-MS/MS analysis of Bp4eT; UV absorption spectra of both Bp4eT isomers.
Journal of Pharmaceutical and Biomedical Analysis | 2013
Petra Kovarikova; Ivana Pasáková-Vrbatová; Anna Vávrová; Ján Stariat; Jiri Klimes; Tomas Simunek
Dexrazoxane (DEX) is the only clinically used drug effective against anthracycline-induced cardiotoxicity and extravasation injury. However, the mechanism of its cardioprotective action still remains elusive. This paucity of comprehensive data is at least partially caused by the analytical difficulties associated with selective and sensitive simultaneous determination of the parent drug and its putative active metabolite ADR-925 in the relevant biological material. The aim of this study was to develop and validate the first LC-MS/MS method for simultaneous determination of DEX and ADR-925 in the isolated rat neonatal ventricular cardiomyocytes (NVCMs) and the cell culture medium. The analysis was performed on a Synergi Polar-RP column using the gradient profile of the mobile phase composed of 2mM ammonium formate and methanol. Electrospray ionization and ion trap mass analyzer were used as ionization and detection techniques, respectively. NVCMs were precipitated with methanol and the cell culture medium samples were diluted with the same solvent prior the LC-MS/MS analysis. The method was validated within the range of 4-80pmol/10(6) NVCMs and 7-70pmol/10(6) NVCMs for DEX and ADR-925, respectively, and at the concentrations of 8-100μM for both compounds in the culture cell medium. The practical applicability of this method was confirmed by the pilot analysis of NVCMs and the corresponding cell medium samples from relevant in vitro experiment. Hence, the LC-MS/MS method developed in this study represents a modern analytical tool suitable for investigation of DEX bioactivation inside the cardiomyocytes. In addition, the basic utility of the method for the analysis of DEX and ADR-925 in plasma samples was proved in a pilot experiment.
PLOS ONE | 2015
Eliška Potůčková; Jaroslav Roh; Miloslav Macháček; Sumit Sahni; Ján Stariat; Vít Šesták; Hana Jansová; Pavlína Hašková; Anna Jirkovská; Kateřina Vávrová; Petra Kovaříková; Danuta S. Kalinowski; Des R. Richardson; Tomáš Šimůnek
Cancer cells have a high iron requirement and many experimental studies, as well as clinical trials, have demonstrated that iron chelators are potential anti-cancer agents. The ligand, 2-benzoylpyridine 4-ethyl-3-thiosemicarbazone (Bp4eT), demonstrates both potent anti-neoplastic and anti-retroviral properties. In this study, Bp4eT and its recently identified amidrazone and semicarbazone metabolites were examined and compared with respect to their anti-proliferative activity towards cancer cells (HL-60 human promyelocytic leukemia, MCF-7 human breast adenocarcinoma, HCT116 human colon carcinoma and A549 human lung adenocarcinoma), non-cancerous cells (H9c2 neonatal rat-derived cardiomyoblasts and 3T3 mouse embryo fibroblasts) and their interaction with intracellular iron pools. Bp4eT was demonstrated to be a highly potent and selective anti-neoplastic agent that induces S phase cell cycle arrest, mitochondrial depolarization and apoptosis in MCF-7 cells. Both semicarbazone and amidrazone metabolites showed at least a 300-fold decrease in cytotoxic activity than Bp4eT towards both cancer and normal cell lines. The metabolites also lost the ability to: (1) promote the redox cycling of iron; (2) bind and mobilize iron from labile intracellular pools; and (3) prevent 59Fe uptake from 59Fe-labeled transferrin by MCF-7 cells. Hence, this study demonstrates that the highly active ligand, Bp4eT, is metabolized to non-toxic and pharmacologically inactive analogs, which most likely contribute to its favorable pharmacological profile. These findings are important for the further development of this drug candidate and contribute to the understanding of the structure-activity relationships of these agents.