Jan T. M. Lenaerts
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan T. M. Lenaerts.
Science | 2012
Andrew Shepherd; Erik R. Ivins; Geruo A; Valentina Roberta Barletta; Michael J. Bentley; Srinivas Bettadpur; Kate Briggs; David H. Bromwich; René Forsberg; Natalia Galin; Martin Horwath; Stan Jacobs; Ian Joughin; Matt A. King; Jan T. M. Lenaerts; Jilu Li; Stefan R. M. Ligtenberg; Adrian Luckman; Scott B. Luthcke; Malcolm McMillan; Rakia Meister; Glenn A. Milne; J. Mouginot; Alan Muir; Julien P. Nicolas; John Paden; Antony J. Payne; Hamish D. Pritchard; Eric Rignot; Helmut Rott
Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly—in some cases, not even agreeing about whether there is a net loss or a net gain—making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise. The mass balance of the polar ice sheets is estimated by combining the results of existing independent techniques. We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth’s polar ice sheets. We find that there is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by –142 ± 49, +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes year−1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year−1 to the rate of global sea-level rise.
Geophysical Research Letters | 2012
Jan T. M. Lenaerts; M. R. van den Broeke; W. J. van de Berg; E. van Meijgaard; P. Kuipers Munneke
A new, high resolution (27 km) surface mass balance (SMB) map of the Antarctic ice sheet is presented, based on output of a regional atmospheric climate model that includes snowdrift physics and is forced by the most recent reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF), ERA-Interim (1979–2010). The SMB map confirms high accumulation zones in the western Antarctic Peninsula (>1500 mm y!1) and coastal West Antarctica (>1000 mm y!1), and shows low SMB values in large parts of the interior ice sheet (
Journal of Geophysical Research | 2012
Jan T. M. Lenaerts; M. R. van den Broeke; Stephen J. Déry; E. van Meijgaard; W. J. van de Berg; Stephen P. Palm; J. Sanz Rodrigo
To simulate the impact of drifting snow on the lower atmosphere, surface characteristics and surface mass balance (SMB) of the Antarctic ice sheet regional atmospheric climate model (RACMO2.1/ANT) with horizontal resolution of 27 km is coupled to a drifting snow routine and forced by ERA-Interim fields at its lateral boundaries (1989–2009). This paper evaluates the near-surface and drifting snow climate of RACMO2.1/ANT. Modeled near-surface wind speed (squared correlation coefficient R2 = 0.64) and temperature (R2 = 0.93) agree well with observations. Wind speed is underestimated in topographically complex areas, where observed wind speeds are locally very high (>20 m s!1). Temperature is underestimated in winter in coastal areas due to an underestimation of downward longwave radiation. Near-surface temperature and wind speed are not significantly affected by the inclusion of drifting snow in the model. In contrast, relative humidity with respect to ice increases in regions with strong drifting snow and becomes more consistent with the observations. Drifting snow frequency is the only observable parameter to directly validate drifting snow results; therefore, we derived an empirical relation for fresh snow density, as a function of wind speed and temperature, which determines the threshold wind speed for drifting snow. Modeled drifting snow frequencies agree well with in situ measurements and novel estimates from remote sensing. Finally, we show that including drifting snow is essential to obtaining a realistic extent and spatial distribution of ablation (SMB < 0) areas.
Geophysical Research Letters | 2015
Kristin Poinar; Ian Joughin; Sarah B. Das; Mark D. Behn; Jan T. M. Lenaerts; Michiel R. van den Broeke
Moulins are important conduits for surface meltwater to reach the bed of the Greenland Ice Sheet. It has been proposed that in a warming climate, newly formed moulins associated with the inland migration of supraglacial lakes could introduce surface melt to new regions of the bed, introducing or enhancing sliding there. By examining surface strain rates, we found that the upper limit to where crevasses, and therefore moulins, are likely to form is ∼1600m. This is also roughly the elevation above which lakes do not drain completely. Thus, meltwater above this elevation will largely flow tens of kilometers through surface streams into existing moulins downstream. Furthermore, results from a thermal ice sheet model indicate that the ∼1600m crevassing limit is well below the wet-frozen basal transition (∼2000m). Together, these data sets suggest that new supraglacial lakes will have a limited effect on the inland expansion of melt-induced seasonal acceleration. Key Points Greenland Ice Sheet meltwater volumes are increasing notably at high elevations Low strain rates limit the likelihood of moulin formation at high elevations High-elevation meltwater will reach an already wet bed at lower elevations
Journal of Geophysical Research | 2012
Laurie Padman; Daniel P. Costa; Michael S. Dinniman; Helen Amanda Fricker; Michael E. Goebel; Luis A. Hückstädt; Angelika Humbert; Ian Joughin; Jan T. M. Lenaerts; Stefan R. M. Ligtenberg; Theodore A. Scambos; Michiel R. van den Broeke
� 0.8 m a � 1 , driven by a mean basal melt rate of 〈wb〉 = 1.3 � 0.4 m a � 1 . Interannual variability was large, associated with changes in both surface mass accumulation and 〈wb〉. Basal melt rate declined significantly around 2000 from 1.8 � 0.4 m a � 1 for 1992–2000 to � 0.75 � 0.55 m a � 1 for 2001–2008; the latter value corresponding to approximately steady-state ice-shelf mass. Observations of ocean temperature T obtained during 2007–2009 by instrumented seals reveal a cold, deep halo of Winter Water (WW; T ≈ � 1.6°C) surrounding WIS. The base of the WW in the halo is � 170 m, approximately the mean ice draft for WIS. We hypothesize that the transition in 〈wb〉 in 2000 was caused by a small perturbation (� 10–20 m) in the relative depths of the ice base and the bottom of the WW layer in the halo. We conclude that basal melting of thin ice shelves like WIS is very sensitive to upper-ocean and coastal processes that act on shorter time and space scales than those affecting basal melting of thicker West Antarctic ice shelves such as George VI and Pine Island Glacier.
Journal of Climate | 2013
Michael P. Meredith; Hugh J. Venables; Andrew Clarke; Hugh W. Ducklow; Matthew Erickson; Melanie J. Leng; Jan T. M. Lenaerts; Michiel R. van den Broeke
Climate change west of the Antarctic Peninsula is the most rapid of anywhere in the Southern Hemisphere, with associated changes in the rates and distributions of freshwater inputs to the ocean. Here, results from the firstcomprehensivesurveyofoxygenisotopesinseawaterinthisregionareusedtoquantifyspatialpatternsof meteoric water (glacial discharge and precipitation) separately from sea ice melt. High levels of meteoric water are found close to the coast, due to orographic effects on precipitation and strong glacial discharge. Concentrations decrease offshore, driving significant southward geostrophic flows (up to ;30 cm s 21 ). These produce high meteoric water concentrations at the southern end of the sampling grid, where collapse of the Wilkins Ice Shelf may also have contributed. Sea ice melt concentrations are lower than meteoric water and patchier because of the mobile nature of the sea ice itself. Nonetheless, net sea ice production in the northern part of the sampling grid is inferred; combined with net sea ice melt in the south, this indicates an overall southwardicemotion.Thesurveyiscontextualizedtemporallyusingadecade-longseriesofisotopedatafrom a coastal Antarctic Peninsula site. This shows a temporal decline in meteoric water in the upper ocean, contrary to expectations based on increasing precipitation and accelerating deglaciation. This is driven by the increasingoccurrenceofdeeperwintermixedlayersandhaspotentialimplications forconcentrations oftrace metals supplied to the euphotic zone by glacial discharge. As the regional freshwater system evolves, the continuing isotope monitoring described here will elucidate the ongoing impacts on climate and the ecosystem.
Journal of Climate | 2014
Jan T. M. Lenaerts; M. R. van den Broeke; J. M. van Wessem; W. J. van de Berg; E. van Meijgaard; L.H. van Ulft; M. Schaefer
This study uses output of a high-resolution (5.5km) regional atmospheric climate model to describe the present-day (1979‐2012) climate of Patagonia, with a particular focus on the surface mass balance (SMB) of the Patagonian ice fields. Through a comparison with available in situ observations, it is shown that the model is able to simulate the sharp climate gradients in western Patagonia. The southern Andes are an efficient barrier for the prevalent atmospheric flow, generating strong orographic uplift and precipitation throughout the entire year. The model suggests extreme orographic precipitation west of the Andes divide, with annual precipitation rates of .5 to 34mw.e. (water equivalent), and a clear rain shadow east of the divide. These modeled precipitation rates are supportedqualitativelyby availableprecipitationstationsand SMBestimates on the ice fields derived from firn cores. For the period 1979‐2012, a slight atmospheric cooling at upper ice field elevations is found, leading to a small but insignificant increase in the ice field SMB.
Nature Geoscience | 2013
Indrani Das; Robin E. Bell; Theodore A. Scambos; Michael Wolovick; Timothy T. Creyts; Michael Studinger; Nicholas Frearson; Julien P. Nicolas; Jan T. M. Lenaerts; Michiel R. van den Broeke
In the Antarctic interior, assessments of surface mass balance may overestimate accumulation because high winds remove some of the annual snowfall. Geophysical observations reveal localized zones of persistent wind scour (where little or no snow accumulates) that are predicted to occur across approximately 5% of the Antarctic surface. Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records1,2. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (≤200 km2) with reduced surface accumulation3,4,5,6,7. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones3. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that ∼ 2.7–6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11–36.5 Gt yr−1 in present surface-mass-balance calculations.
Geophysical Research Letters | 2015
Jan T. M. Lenaerts; Dewi Le Bars; Leo van Kampenhout; Miren Vizcaino; Ellyn M. Enderlin; Michiel R. van den Broeke
Here we present a long-term (1850–2200) best estimate of Greenland ice sheet (GrIS) freshwater runoff that improves spatial detail of runoff locations and temporal resolution. Ice discharge is taken from observations since 2000 and assumed constant in time. Surface meltwater runoff is retrieved from regional climate model output for the recent past and parameterized for the future based on significant correlations between runoff and midtropospheric (500 hPa) summer temperature changes over the GrIS. The simplicity of this approach enables assimilation of meltwater runoff into coupled climate models, which is demonstrated here in a case study with the medium-resolution (1?) Community Earth System Model. The model results suggest that the decrease in Atlantic Meridional Overturning Circulation (AMOC) is dominated by warming of the surface ocean and enhanced GrIS freshwater forcing leads to a slightly enhanced (?1.2 sverdrup in the 21st century) weakening of the AMOC.
Antarctic Science | 2010
Michiel R. van den Broeke; Gert König-Langlo; Ghislain Picard; Peter Kuipers Munneke; Jan T. M. Lenaerts
Abstract A surface energy balance model is forced by 13 years of high-quality hourly observations from the Antarctic coastal station Neumayer. The model accurately reproduces observed surface temperatures. Surface sublimation is significant in summer, when absorbed solar radiation heats the surface. Including a first order estimate of snowdrift sublimation in the calculation more than triples the total sublimation, removing 19% of the solid precipitation, indicating that snowdrift sublimation is potentially important for the mass balance of Antarctic ice shelves. Surface melt occurs at Neumayer in all summers, but all the meltwater refreezes. In two-thirds of the cases, the refreezing is quasi-instantaneous (within the model timestep of 6 min), so that no liquid water remains in the snow. For all other events, the occurrence of liquid water in the snowpack at Neumayer agrees well with satellite-based liquid water detection.