Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan U. Lohmann is active.

Publication


Featured researches published by Jan U. Lohmann.


Nature Genetics | 2005

A gene expression map of Arabidopsis thaliana development

Markus Schmid; Timothy S. Davison; Stefan R. Henz; Utz J. Pape; Monika Demar; Martin Vingron; Bernhard Schölkopf; Detlef Weigel; Jan U. Lohmann

Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.


Nature | 2005

WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators

Andrea Leibfried; Jennifer P.C. To; Wolfgang Busch; Sandra Stehling; Andreas Kehle; Monika Demar; Joseph J. Kieber; Jan U. Lohmann

Plants continuously maintain pools of totipotent stem cells in their apical meristems from which elaborate root and shoot systems are produced. In Arabidopsis thaliana, stem cell fate in the shoot apical meristem is controlled by a regulatory network that includes the CLAVATA (CLV) ligand–receptor system and the homeodomain protein WUSCHEL (WUS). Phytohormones such as auxin and cytokinin are also important for meristem regulation. Here we show a mechanistic link between the CLV/WUS network and hormonal control. WUS, a positive regulator of stem cells, directly represses the transcription of several two-component ARABIDOPSIS RESPONSE REGULATOR genes (ARR5, ARR6, ARR7 and ARR15), which act in the negative-feedback loop of cytokinin signalling. These data indicate that ARR genes might negatively influence meristem size and that their repression by WUS might be necessary for proper meristem function. Consistent with this hypothesis is our observation that a mutant ARR7 allele, which mimics the active, phosphorylated form, causes the formation of aberrant shoot apical meristems. Conversely, a loss-of-function mutation in a maize ARR homologue was recently shown to cause enlarged meristems.


Cell | 2001

A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis

Jan U. Lohmann; Ray L. Hong; Martin Hobe; Maximilian A. Busch; François Parcy; Rüdiger Simon; Detlef Weigel

The homeotic gene AGAMOUS (AG) has dual roles in specifying organ fate and limiting stem cell proliferation in Arabidopsis flowers. We show that the floral identity protein LEAFY (LFY), a transcription factor expressed throughout the flower, cooperates with the homeodomain protein WUSCHEL (WUS) to activate AG in the center of flowers. WUS was previously identified because of its role in maintaining stem cell populations in both shoot and floral meristems. The unsuspected additional role of WUS in regulating floral homeotic gene expression supports the hypothesis that floral patterning uses a general meristem patterning system that was present before flowers evolved. We also show that AG represses WUS at later stages of floral development, thus creating a negative feedback loop that is required for the determinate growth of floral meristems.


Development | 2003

Dissection of floral induction pathways using global expression analysis.

Markus Schmid; N. Henriette Uhlenhaut; François Godard; Monika Demar; Ray A. Bressan; Detlef Weigel; Jan U. Lohmann

Flowering of the reference plant Arabidopsis thaliana is controlled by several signaling pathways, which converge on a small set of genes that function as pathway integrators. We have analyzed the genomic response to one type of floral inductive signal, photoperiod, to dissect the function of several genes transducing this stimulus, including CONSTANS, thought to be the major output of the photoperiod pathway. Comparing the effects of CONSTANS with those of FLOWERING LOCUS T, which integrates inputs from CONSTANS and other floral inductive pathways, we find that expression profiles of shoot apices from plants with mutations in either gene are very similar. In contrast, a mutation in LEAFY, which also acts downstream of CONSTANS, has much more limited effects. Another pathway integrator, SUPPRESSOR OF OVEREXPRESSION OF CO 1, is responsive to acute induction by photoperiod even in the presence of the floral repressor encoded by FLOWERING LOCUS C. We have discovered a large group of potential floral repressors that are down-regulated upon photoperiodic induction. These include two AP2 domain-encoding genes that can repress flowering. The two paralogous genes, SCHLAFMÜTZE and SCHNARCHZAPFEN, share a signature with partial complementarity to the miR172 microRNA, whose precursor we show to be induced upon flowering. These and related findings on SPL genes suggest that microRNAs play an important role in the regulation of flowering.


Nature | 2010

Hormonal control of the shoot stem-cell niche

Zhong Zhao; Stig U. Andersen; Karin Ljung; Karel Dolezal; Andrej Miotk; Sebastian J. Schultheiss; Jan U. Lohmann

The classic phytohormones cytokinin and auxin play essential roles in the maintenance of stem-cell systems embedded in shoot and root meristems, and exhibit complex functional interactions. Here we show that the activity of both hormones directly converges on the promoters of two A-type ARABIDOPSIS RESPONSE REGULATOR (ARR) genes, ARR7 and ARR15, which are negative regulators of cytokinin signalling and have important meristematic functions. Whereas ARR7 and ARR15 expression in the shoot apical meristem (SAM) is induced by cytokinin, auxin has a negative effect, which is, at least in part, mediated by the AUXIN RESPONSE FACTOR5/MONOPTEROS (MP) transcription factor. Our results provide a mechanistic framework for hormonal control of the apical stem-cell niche and demonstrate how root and shoot stem-cell systems differ in their response to phytohormones.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana

Sascha Laubinger; Timo Sachsenberg; Georg Zeller; Wolfgang Busch; Jan U. Lohmann; Gunnar Rätsch; Detlef Weigel

The processing of Arabidopsis thaliana microRNAs (miRNAs) from longer primary transcripts (pri-miRNAs) requires the activity of several proteins, including DICER-LIKE1 (DCL1), the double-stranded RNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). It has been noted before that the morphological appearance of weak se mutants is reminiscent of plants with mutations in ABH1/CBP80 and CBP20, which encode the two subunits of the nuclear cap-binding complex. We report that, like SE, the cap-binding complex is necessary for proper processing of pri-miRNAs. Inactivation of either ABH1/CBP80 or CBP20 results in decreased levels of mature miRNAs accompanied by apparent stabilization of pri-miRNAs. Whole-genome tiling array analyses reveal that se, abh1/cbp80, and cbp20 mutants also share similar splicing defects, leading to the accumulation of many partially spliced transcripts. This is unlikely to be an indirect consequence of improper miRNA processing or other mRNA turnover pathways, because introns retained in se, abh1/cbp80, and cbp20 mutants are not affected by mutations in other genes required for miRNA processing or for nonsense-mediated mRNA decay. Taken together, our results uncover dual roles in splicing and miRNA processing that distinguish SE and the cap-binding complex from specialized miRNA processing factors such as DCL1 and HYL1.


Developmental Cell | 2002

Building beauty: the genetic control of floral patterning

Jan U. Lohmann; Detlef Weigel

Floral organ identity is controlled by combinatorial action of homeotic genes expressed in different territories within the emerging flower. This review discusses recent progress in our understanding of floral homeotic genes, with an emphasis on how their region-specific expression is regulated.


Developmental Cell | 2010

Transcriptional Control of a Plant Stem Cell Niche

Wolfgang Busch; Andrej Miotk; Federico Ariel; Zhong Zhao; Joachim Forner; Gabor Daum; Takuya Suzaki; Christoph M. Schuster; Sebastian J. Schultheiss; Andrea Leibfried; Silke Haubeiß; Nati Ha; Raquel L. Chan; Jan U. Lohmann

Despite the independent evolution of multicellularity in plants and animals, the basic organization of their stem cell niches is remarkably similar. Here, we report the genome-wide regulatory potential of WUSCHEL, the key transcription factor for stem cell maintenance in the shoot apical meristem of the reference plant Arabidopsis thaliana. WUSCHEL acts by directly binding to at least two distinct DNA motifs in more than 100 target promoters and preferentially affects the expression of genes with roles in hormone signaling, metabolism, and development. Striking examples are the direct transcriptional repression of CLAVATA1, which is part of a negative feedback regulation of WUSCHEL, and the immediate regulation of transcriptional repressors of the TOPLESS family, which are involved in auxin signaling. Our results shed light on the complex transcriptional programs required for the maintenance of a dynamic and essential stem cell niche.


The Plant Cell | 2008

Requirement of B2-Type Cyclin-Dependent Kinases for Meristem Integrity in Arabidopsis thaliana

Stig U. Andersen; Sabine Buechel; Zhong Zhao; Karin Ljung; Ondřej Novák; Wolfgang Busch; Christoph M. Schuster; Jan U. Lohmann

To maintain proper meristem function, cell division and differentiation must be coordinately regulated in distinct subdomains of the meristem. Although a number of regulators necessary for the correct organization of the shoot apical meristem (SAM) have been identified, it is still largely unknown how their function is integrated with the cell cycle machinery to translate domain identity into correct cellular behavior. We show here that the cyclin-dependent kinases CDKB2;1 and CDKB2;2 are required both for normal cell cycle progression and for meristem organization. Consistently, the CDKB2 genes are highly expressed in the SAM in a cell cycle–dependent fashion, and disruption of CDKB2 function leads to severe meristematic defects. In addition, strong alterations in hormone signaling both at the level of active hormones and with respect to transcriptional and physiological outputs were observed in plants with disturbed CDKB2 activity.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis

Gabor Daum; Anna Medzihradszky; Takuya Suzaki; Jan U. Lohmann

Significance Cell–cell communication is a prerequisite of multicellular development and noncell autonomous stem cell induction has been conserved during evolution. Cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring cells, are a striking innovation for cell–cell signaling in plants. Here, we show that plasmodesmata function is required for the activity of shoot apical stem cells in Arabidopsis and provide evidence that the stem cell inducing transcription factor WUSCHEL moves from the niche into the stem cells via this route. WUSCHEL movement is functionally relevant and mediated by multiple protein domains. Because parts of the protein that restrict movement are required for homodimerization, the formation of WUSCHEL dimers might contribute to the regulation of stem cell activity in Arabidopsis. Cell–cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell–cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell–cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.

Collaboration


Dive into the Jan U. Lohmann's collaboration.

Top Co-Authors

Avatar

Wolfgang Busch

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhong Zhao

University of Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge