Jan Vícha
Central European Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jan Vícha.
Journal of Chemical Theory and Computation | 2015
Jan Vícha; Cina Foroutan-Nejad; Tomasz Pawlak; Markéta Munzarová; Michal Straka; Radek Marek
The significant role of relativistic effects in altering the NMR chemical shifts of light nuclei in heavy-element compounds has been recognized for a long time; however, full understanding of this phenomenon in relation to the electronic structure has not been achieved. In this study, the recently observed qualitative differences between the platinum and gold compounds in the magnitude and the sign of spin-orbit-induced (SO) nuclear magnetic shielding at the vicinal light atom ((13)C, (15)N), σ(SO)(LA), are explained by the contractions of 6s and 6p atomic orbitals in Au complexes, originating in the larger Au nuclear charge and stronger scalar relativistic effects in gold complexes. This leads to the chemical activation of metal 6s and 6p atomic orbitals in Au complexes and their larger participation in bonding with the ligand, which modulates the propagation of metal-induced SO effects on the NMR signal of the LA via the Spin-Orbit/Fermi Contact (SO/FC) mechanism. The magnitude of the σ(SO)(LA) in these square-planar complexes can be understood on the basis of a balance between various metal-based 5d → 5d* and 6p → 6p* orbital magnetic couplings. The large and positive σ(SO)(LA) in platinum complexes is dominated by the shielding platinum-based 5d → 5d* magnetic couplings, whereas small or negative σ(SO)(LA) in gold complexes is related to the deshielding contribution of the gold-based 6p → 6p* magnetic couplings. Further, it is demonstrated that σ(SO)(LA) correlates quantitatively with the extent of M-LA electron sharing that is the covalence of the M-LA bond (characterized by the QTAIM delocalization index, DI). The present findings will contribute to further understanding of the origin and propagation of the relativistic effects influencing the experimental NMR parameters in heavy-element systems.
Journal of Chemical Theory and Computation | 2014
Jan Vícha; Michal Straka; Markéta Munzarová; Radek Marek
Relativistic effects play an essential role in understanding the nuclear magnetic resonance (NMR) chemical shifts in heavy-atom compounds. Particularly interesting from the chemical point of view are the relativistic effects due to heavy atom (HA) on the NMR chemical shifts of the nearby light atoms (LA), referred to as the HALA effects. The effect of Spin-Orbit (SO) interaction originating from HA on the nuclear magnetic shielding at a neighboring LA, σ(SO), is explored here in detail for a series of d(6) complexes of iridium. Unlike the previous findings, the trends in σ(SO) observed in this study can be fully explained neither in terms of the s-character of the HA-LA bonding nor by trends in the energy differences between occupied and virtual molecular orbitals (MOs). Rather, the σ(SO) contribution to the total NMR shielding is found to be modulated by the d-orbital participation of the heavy atom (Ir) in the occupied and virtual spin-orbit active MOs, i.e., those which contribute significantly to the σ(SO). The correlation between the d-character of σ(SO)-active MOs and the size of the corresponding SO contribution to the nuclear magnetic shielding constant at LA is so tight that the magnitude of σ(SO) can be predicted in a given class of compounds on the basis of d-orbital character of relevant MO with relative error smaller than 15%. This correspondence is supported by an analogy between the perturbation theory expressions for the spin-orbit induced NMR σ-tensor and those for the EPR g-tensor as well as the A-tensor of the ligand. This correlation is demonstrated on a series of d(5) complexes of iridium. Thus, known qualitative relationships between electronic structure and EPR parameters can be newly applied to reproduce, predict, and understand the SO-induced contributions to NMR shielding constants of light atoms in heavy-atom compounds.
Inorganic Chemistry | 2012
Jan Vícha; Gabriel Demo; Radek Marek
Two novel Pt(IV) complexes of aromatic cytokinins with possible antitumor properties were prepared by reaction of selected aminopurines with K(2)PtCl(6). The structures of both complexes, 9-[6-(benzylamino)purine] pentachloroplatinate (IV) and 9-[6-(furfurylamino)purine] pentachloroplatinate (IV), were characterized in detail by using two-dimensional NMR spectroscopy ((1)H, (13)C, (15)N, and (195)Pt) in solution and CP/MAS NMR techniques in the solid state. We report for the first time the X-ray structure of a nucleobase adenine derivative coordinated to Pt(IV) via the N9 atom. The protonation equilibria for the complexes in solution were characterized by using NMR spectroscopy (isotropic chemical shifts and indirect nuclear spin-spin coupling constants) and the structural conclusions drawn from the NMR analysis are supported by relativistic density-functional theory (DFT) calculations. Because of the presence of the Pt atom, hybrid GGA functionals and scalar-relativistic and spin-orbit corrections were employed for both the DFT calculations of the molecular structure and particularly for the NMR chemical shifts. In particular, the populations of the N7-protonated and neutral forms of the complexes in solution were characterized by correlating the experimental and the DFT-calculated NMR chemical shifts. In contrast to the chemical exchange process involving the N7-H group, the hydrogen atom at N3 was determined to be unexpectedly rigid, probably because of the presence of the stabilizing intramolecular interaction N3-H···Cl. The described methodology combining the NMR spectroscopy and relativistic DFT calculations can be employed for characterizing the tautomeric and protonation equilibria in a large family of transition-metal-modified purine bases.
Inorganic Chemistry | 2016
Jan Vícha; Radek Marek; Michal Straka
The (13)C and (29)Si NMR signals of ligand atoms directly bonded to Tl(I) or Pb(II) heavy-element centers are predicted to resonate at very high frequencies, up to 400 ppm for (13)C and over 1000 ppm for (29)Si, outside the typical experimental NMR chemical-shift ranges for a given type of nuclei. The large (13)C and (29)Si NMR chemical shifts are ascribed to sizable relativistic spin-orbit effects, which can amount to more than 200 ppm for (13)C and more than 1000 ppm for (29)Si, values unexpected for diamagnetic compounds of the main group elements. The origin of the vast spin-orbit contributions to the (13)C and (29)Si NMR shifts is traced to the highly efficient 6p → 6p* metal-based orbital magnetic couplings and related to the 6p orbital-based bonding together with the low-energy gaps between the occupied and virtual orbital subspaces in the subvalent Tl(I) and Pb(II) compounds. New NMR spectral regions for these compounds are suggested based on the fully relativistic density functional theory calculations in the Dirac-Coulomb framework carefully calibrated on the experimentally known NMR data for Tl(I) and Pb(II) complexes.
Magnetic Resonance in Chemistry | 2010
Jan Vícha; Michal Maloň; Petra Veselá; Otakar Humpa; Miroslav Strnad; Radek Marek
The 1H and 13C NMR resonances of 16 purine glucosides were assigned by a combination of one‐ and two‐dimensional NMR experiments, including gs‐COSY, gs‐HSQC, and gs‐HMBC, in order to characterize the effect of substituent and the position of glucose unit on the NMR chemical shifts. In addition, 15N NMR chemical shifts for selected derivatives were investigated by using 1H15N chemical shift correlation techniques. To map the influence of sugar moiety on the directly bonded nitrogen atom, selected N9‐glucosides and their ribose analogs were compared. Characteristic long‐range 1H15N coupling constants, measured by using 1H15N gradient‐selected single‐quantum multiple bond correlation (GSQMBC), are also reported and discussed. All compounds investigated here belong to cytokinins, an important group of plant hormones. Copyright
Physical Chemistry Chemical Physics | 2015
Jan Vícha; Jan Novotný; Michal Straka; Michal Repisky; Kenneth Ruud; Stanislav Komorovsky; Radek Marek
The role of various factors (structure, solvent, and relativistic treatment) was evaluated for square-planar 4d and 5d transition-metal complexes. The DFT method for calculating the structures was calibrated using a cluster approach and compared to X-ray geometries, with the PBE0 functional (def2-TZVPP basis set) providing the best results, followed closely by the hybrid TPSSH and the MN12SX functionals. Calculations of the NMR chemical shifts using the two-component (2c, Zeroth-Order Regular Approximation as implemented in the ADF package) and four-component (4c, Dirac-Coulomb as implemented in the ReSpect code) relativistic approaches were performed to analyze and demonstrate the importance of solvent corrections (2c) as well as a proper treatment of relativistic effects (4c). The importance of increased exact-exchange admixture in the functional (here PBE0) for reproducing the experimental data using the current implementation of the 2c approach is partly rationalized as a compensation for the missing exchange-correlation response kernel. The kernel contribution was identified to be about 15-20% of the spin-orbit-induced NMR chemical shift, ΔδSO, which roughly corresponds to an increase in ΔδSO introduced by the artificially increased exact-exchange admixture in the functional. Finally, the role of individual effects (geometry, solvent, relativity) in the NMR chemical shift is discussed in selected complexes. Although a fully relativistic DFT approach is still awaiting the implementation of GIAOs for hybrid functionals and an implicit solvent model, it nevertheless provides reliable NMR chemical shift data at an affordable computational cost. It is expected to outperform the 2c approach, in particular for the calculation of NMR parameters in heavy-element compounds.
Journal of Chemical Theory and Computation | 2017
Jan Novotný; Jan Vícha; Pankaj Lochan Bora; Michal Repisky; Michal Straka; Stanislav Komorovsky; Radek Marek
Relativistic effects significantly affect various spectroscopic properties of compounds containing heavy elements. Particularly in Nuclear Magnetic Resonance (NMR) spectroscopy, the heavy atoms strongly influence the NMR shielding constants of neighboring light atoms. In this account we analyze paramagnetic contributions to NMR shielding constants and their modulation by relativistic spin-orbit effects in a series of transition-metal complexes of Pt(II), Au(I), Au(III), and Hg(II). We show how the paramagnetic NMR shielding and spin-orbit effects relate to the character of the metal-ligand (M-L) bond. A correlation between the (back)-donation character of the M-L bond in d10 Au(I) complexes and the propagation of the spin-orbit (SO) effects from M to L through the M-L bond influencing the ligand NMR shielding via the Fermi-contact mechanism is found and rationalized by using third-order perturbation theory. The SO effects on the ligand NMR shielding are demonstrated to be driven by both the electronic structure of M and the nature of the trans ligand, sharing the σ-bonding metal orbital with the NMR spectator atom L. The deshielding paramagnetic contribution is linked to the σ-type M-L bonding orbitals, which are notably affected by the trans ligand. The SO deshielding role of σ-type orbitals is enhanced in d10 Hg(II) complexes with the Hg 6p atomic orbital involved in the M-L bonding. In contrast, in d8 Pt(II) complexes, occupied π-type orbitals play a dominant role in the SO-altered magnetic couplings due to the accessibility of vacant antibonding σ-type MOs in formally open 5d-shell (d8). This results in a significant SO shielding at the light atom. The energy- and composition-modulation of σ- vs π-type orbitals by spin-orbit coupling is rationalized and supported by visualizing the SO-induced changes in the electron density around the metal and light atoms (spin-orbit electron deformation density, SO-EDD).
Chemistry: A European Journal | 2014
Cina Foroutan-Nejad; Jan Vícha; Radek Marek
A new family of stereoelectronically promoted aluminum and scandium super Lewis acids is introduced on the basis of state-of-the-art computations. Structures of these molecules are designed to minimize resonance electron donation to central metal atoms in the Lewis acids. Acidity of these species is evaluated on the basis of their fluoride-ion affinities relative to the antimony pentafluoride reference system. It is demonstrated that introduced changes in the stereochemistry of the designed ligands increase acidity considerably relative to Al and Sc complexes with analogous monodentate ligands. The high stability of fluoride complexes of these species makes them ideal candidates to be used as weakly coordinating anions in combination with highly reactive cations instead of conventional Lewis acid-fluoride complexes. Further, the interaction of all designed molecules with methane is investigated. All studied acids form stable pentavalent-carbon complexes with methane. In addition, interactions of the strongest acid of this family with very weak bases, namely, H2, N2, carbon oxides, and noble gases were investigated; it is demonstrated that this compound can form considerably stable complexes with the aforementioned molecules. To the best of our knowledge, carbonyl and nitrogen complexes of this species are the first hypothetical four-coordinated carbonyl and nitrogen complexes of aluminum. The nature of bonding in these systems is studied in detail by various bonding analysis approaches.
Journal of Physical Chemistry A | 2017
Jakub Kaminský; Jan Vícha; Petr Bouř; Michal Straka
Only a single thorium fullerene, Th@C84, has been reported to date (Akiyama, K.; et al. J. Nucl. Radiochem. Sci. 2002, 3, 151-154). Although the system was characterized by UV-vis and XANES (X-ray absorption near edge structure) spectra, its structure and properties remain unknown. In this work we used the density functional calculations to identify molecular and electronic structure of the Th@C84. Series of molecular structures satisfying the ThC84 stoichiometric formula were studied comprising 24 IPR and 110 non-IPR Th@C84 isomers as well as 9 ThC2@C82 IPR isomers. The lowest energy structure is Th@C84-Cs(10) with the singlet ground state. Its predicted electronic absorption spectra are in agreement with the experimentally observed ones. The bonding between the cage and Th was characterized as polar covalent with Th in formal oxidation state IV. The NMR chemical shifts of Th@C84-Cs(10) were predicted to guide the future experimental efforts in identification of this compound.
Journal of Chemical Theory and Computation | 2018
Jan Vícha; Stanislav Komorovsky; Michal Repisky; Radek Marek; Michal Straka
The importance of relativistic effects on the NMR parameters in heavy-atom (HA) compounds, particularly the SO-HALA (Spin-Orbit Heavy Atom on the Light Atom) effect on NMR chemical shifts, has been known for about 40 years. Yet, a general correlation between the electronic structure and SO-HALA effect has been missing. By analyzing 1H NMR chemical shifts of the sixth-period hydrides (Cs-At), we discovered general electronic-structure principles and mechanisms that dictate the size and sign of the SO-HALA NMR chemical shifts. In brief, partially occupied HA valence shells induce relativistic shielding at the light atom (LA) nuclei, while empty HA valence shells induce relativistic deshielding. In particular, the LA nucleus is relativistically shielded in 5d2-5d8 and 6p4 HA hydrides and deshielded in 4f0, 5d0, 6s0, and 6p0 HA hydrides. This general and intuitive concept explains periodic trends in the 1H NMR chemical shifts along the sixth-period hydrides (Cs-At) studied in this work. We present substantial evidence that the introduced principles have a general validity across the periodic table and can be extended to nonhydride LAs. The decades-old question of why compounds with occupied frontier π molecular orbitals (MOs) cause SO-HALA shielding at the LA nuclei, while the frontier σ MOs cause deshielding is answered. We further derive connection between the SO-HALA NMR chemical shifts and Spin-Orbit-induced Electron Deformation Density (SO-EDD), a property that can be obtained easily from differential electron densities and can be represented graphically. SO-EDD provides an intuitive understanding of the SO-HALA effect in terms of the depletion/concentration of the electron density at LA nuclei caused by spin-orbit coupling due to HA in the presence of a magnetic field. Using an analogy between the SO-EDD concept and arguments from classic NMR theory, the complex question of the SO-HALA NMR chemical shifts becomes easily understandable for a wide chemical audience.