Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan W. Drijfhout is active.

Publication


Featured researches published by Jan W. Drijfhout.


The New England Journal of Medicine | 2009

Vaccination against HPV-16 Oncoproteins for Vulvar Intraepithelial Neoplasia

Gemma G. Kenter; Marij J. P. Welters; A. Rob P. M. Valentijn; Margriet J. G. Löwik; Dorien M. A. Berends-van der Meer; Annelies P.G. Vloon; Farah Essahsah; Lorraine M. Fathers; Rienk Offringa; Jan W. Drijfhout; Amon R. Wafelman; Jaap Oostendorp; Gert Jan Fleuren; Sjoerd H. van der Burg; Cornelis J. M. Melief

BACKGROUND Vulvar intraepithelial neoplasia is a chronic disorder caused by high-risk types of human papillomavirus (HPV), most commonly HPV type 16 (HPV-16). Spontaneous regression occurs in less than 1.5% of patients, and the rate of recurrence after treatment is high. METHODS We investigated the immunogenicity and efficacy of a synthetic long-peptide vaccine in women with HPV-16-positive, high-grade vulvar intraepithelial neoplasia. Twenty women with HPV-16-positive, grade 3 vulvar intraepithelial neoplasia were vaccinated three or four times with a mix of long peptides from the HPV-16 viral oncoproteins E6 and E7 in incomplete Freunds adjuvant. The end points were clinical and HPV-16-specific T-cell responses. RESULTS The most common adverse events were local swelling in 100% of the patients and fever in 64% of the patients; none of these events exceeded grade 2 of the Common Terminology Criteria for Adverse Events of the National Cancer Institute. At 3 months after the last vaccination, 12 of 20 patients (60%; 95% confidence interval [CI], 36 to 81) had clinical responses and reported relief of symptoms. Five women had complete regression of the lesions, and HPV-16 was no longer detectable in four of them. At 12 months of follow-up, 15 of 19 patients had clinical responses (79%; 95% CI, 54 to 94), with a complete response in 9 of 19 patients (47%; 95% CI, 24 to 71). The complete-response rate was maintained at 24 months of follow-up. All patients had vaccine-induced T-cell responses, and post hoc analyses suggested that patients with a complete response at 3 months had a significantly stronger interferon-gamma-associated proliferative CD4+ T-cell response and a broad response of CD8+ interferon-gamma T cells than did patients without a complete response. CONCLUSIONS Clinical responses in women with HPV-16-positive, grade 3 vulvar intraepithelial neoplasia can be achieved by vaccination with a synthetic long-peptide vaccine against the HPV-16 oncoproteins E6 and E7. Complete responses appear to be correlated with induction of HPV-16-specific immunity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Hematopoiesis-restricted minor histocompatibility antigens HA-1- or HA-2-specific T cells can induce complete remissions of relapsed leukemia

W. A. Erik Marijt; Mirjam H.M. Heemskerk; Freke M. Kloosterboer; Els Goulmy; Michel G.D. Kester; Menno A.W.G. van der Hoorn; Simone A. P. van Luxemburg-Heys; Manja Hoogeboom; Tuna Mutis; Jan W. Drijfhout; Jon J. van Rood; R. Willemze; J.H. Frederik Falkenburg

Donor lymphocyte infusion (DLI) into patients with a relapse of their leukemia or multiple myeloma after allogeneic stem cell transplantation (alloSCT) has been shown to be a successful treatment approach. The hematopoiesis-restricted minor histocompatibility antigens (mHAgs) HA-1 or HA-2 expressed on malignant cells of the recipient may serve as target antigens for alloreactive donor T cells. Recently we treated three mHAg HA-1- and/or HA-2-positive patients with a relapse of their disease after alloSCT with DLI from their mHAg HA-1- and/or HA-2-negative donors. Using HLA-A2/HA-1 and HA-2 peptide tetrameric complexes we showed the emergence of HA-1- and HA-2-specific CD8+ T cells in the blood of the recipients 5–7 weeks after DLI. The appearance of these tetramer-positive cells was followed immediately by a complete remission of the disease and restoration of 100% donor chimerism in each of the patients. Furthermore, cloned tetramer-positive T cells isolated during the clinical response specifically recognized HA-1 and HA-2 expressing malignant progenitor cells of the recipient and inhibited the growth of leukemic precursor cells in vitro. Thus, HA-1- and HA-2-specific cytotoxic T lymphocytes emerging in the blood of patients after DLI demonstrate graft-versus-leukemia or myeloma reactivity resulting in a durable remission. This finding implies that in vitro generated HA-1- and HA-2-specific cytotoxic T lymphocytes could be used as adoptive immunotherapy to treat hematological malignances relapsing after alloSCT.


Journal of Immunology | 2003

The Antimicrobial Peptide LL-37 Activates Innate Immunity at the Airway Epithelial Surface by Transactivation of the Epidermal Growth Factor Receptor

G. Sandra Tjabringa; Jamil Aarbiou; Dennis K. Ninaber; Jan W. Drijfhout; Ole E. Sørensen; Niels Borregaard; Klaus F. Rabe; Pieter S. Hiemstra

Antimicrobial peptides produced by epithelial cells and neutrophils represent essential elements of innate immunity, and include the defensin and cathelicidin family of antimicrobial polypeptides. The human cathelicidin cationic antimicrobial protein-18 is an antimicrobial peptide precursor predominantly expressed in neutrophils, and its active peptide LL-37 is released from the precursor through the action of neutrophil serine proteinases. LL-37 has been shown to display antimicrobial activity against a broad spectrum of microorganisms, to neutralize LPS bioactivity, and to chemoattract neutrophils, monocytes, mast cells, and T cells. In this study we show that LL-37 activates airway epithelial cells as demonstrated by activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and increased release of IL-8. Epithelial cell activation was inhibited by the MAPK/ERK kinase (MEK) inhibitors PD98059 and U0126, by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, by blocking anti-EGFR and anti-EGFR-ligand Abs, and by the metalloproteinase inhibitor GM6001. These data suggest that LL-37 transactivates the EGFR via metalloproteinase-mediated cleavage of membrane-anchored EGFR-ligands. LL-37 may thus constitute one of the mediators by which neutrophils regulate epithelial cell activity in the lung.


Journal of Experimental Medicine | 2002

Specificity of Tissue Transglutaminase Explains Cereal Toxicity in Celiac Disease

L. Willemijn Vader; Arnoud H. de Ru; Yvonne van der Wal; Yvonne Kooy; Willemien E. Benckhuijsen; M. Luisa Mearin; Jan W. Drijfhout; Peter A. van Veelen; Frits Koning

Celiac disease is caused by a selective lack of T cell tolerance for gluten. It is known that the enzyme tissue transglutaminase (tTG) is involved in the generation of T cell stimulatory gluten peptides through deamidation of glutamine, the most abundant amino acid in gluten. Only particular glutamine residues, however, are modified by tTG. Here we provide evidence that the spacing between glutamine and proline, the second most abundant amino acid in gluten, plays an essential role in the specificity of deamidation. On the basis of this, algorithms were designed and used to successfully predict novel T cell stimulatory peptides in gluten. Strikingly, these algorithms identified many similar peptides in the gluten-like hordeins from barley and secalins from rye but not in the avenins from oats. The avenins contain significantly lower percentages of proline residues, which offers a likely explanation for the lack of toxicity of oats. Thus, the unique amino acid composition of gluten and related proteins in barley and rye favors the generation of toxic T cell stimulatory gluten peptides by tTG. This provides a rationale for the observation that celiac disease patients are intolerant to these cereal proteins but not to other common food proteins.


Clinical Cancer Research | 2008

Induction of Tumor-Specific CD4+ and CD8+ T-Cell Immunity in Cervical Cancer Patients by a Human Papillomavirus Type 16 E6 and E7 Long Peptides Vaccine

Marij J. P. Welters; Gemma G. Kenter; Sytse J. Piersma; Annelies P.G. Vloon; Margriet J. G. Löwik; Dorien M. A. Berends-van der Meer; Jan W. Drijfhout; A. Rob P. M. Valentijn; Amon R. Wafelman; Jaap Oostendorp; Gert Jan Fleuren; Rienk Offringa; Cornelis J. M. Melief; Sjoerd H. van der Burg

Purpose: The study aims to evaluate the effect of a human papillomavirus type 16 (HPV16) E6 and E7 synthetic long peptides vaccine on the antigen-specific T-cell response in cervical cancer patients. Experimental Design: Patients with resected HPV16-positive cervical cancer were vaccinated with an overlapping set of long peptides comprising the sequences of the HPV16 E6 and E7 oncoproteins emulsified in Montanide ISA-51. HPV16-specific T-cell immune responses were analyzed by evaluating the magnitude, breadth, type, and polarization by proliferation assays, IFNγ-ELISPOT, and cytokine production and phenotyped by the T-cell markers CD4, CD8, CD25, and Foxp3. Results: Vaccine-induced T-cell responses against HPV16 E6 and E7 were detected in six of six and five of six patients, respectively. These responses were broad, involved both CD4+ and CD8+ T cells, and could be detected up to 12 months after the last vaccination. The vaccine-induced responses were dominated by effector type CD4+CD25+Foxp3− type 1 cytokine IFNγ-producing T cells but also included the expansion of T cells with a CD4+CD25+Foxp3+ phenotype. Conclusions: The HPV16 E6 and E7 synthetic long peptides vaccine is highly immunogenic, in that it increases the number and activity of HPV16-specific CD4+ and CD8+ T cells to a broad array of epitopes in all patients. The expansion of CD4+ and CD8+ tumor-specific T cells, both considered to be important in the antitumor response, indicates the immunotherapeutic potential of this vaccine. Notably, part of the vaccine-induced T cells display a CD4+CD25+Foxp3+ phenotype that is frequently associated with regulatory T-cell function, suggesting that strategies to disarm this subset of T cells should be considered as components of immunotherapeutic modalities against HPV-induced cancers.


Immunity | 1997

The HLA-A*0201-Restricted H-Y Antigen Contains a Posttranslationally Modified Cysteine That Significantly Affects T Cell Recognition

Leslie Meadows; Wei Wang; Joke M. M. den Haan; Els Blokland; Carla Reinhardus; Jan W. Drijfhout; Jeffrey Shabanowitz; Richard A. Pierce; Alexander I. Agulnik; Colin E. Bishop; Donald F. Hunt; Els Goulmy; Victor H. Engelhard

A peptide recognized by two cytotoxic T cell clones specific for the human minor histocompatibility antigen H-Y and restricted by HLA-A*0201 was identified. This peptide originates from SMCY, as do two other H-Y epitopes, supporting the importance of this protein as a major source of H-Y determinants in mice and humans. In naturally processed peptides, T cells only recognize posttranslationally altered forms of this peptide that have undergone modification of a cysteine residue in the seventh position. One of these modifications involves attachment of a second cysteine residue via a disulfide bond. This modification has profound effects on T cell recognition and also occurs in other class I MHC-associated peptides, supporting its general importance as an immunological determinant.


Journal of Clinical Investigation | 2009

CTLs are targeted to kill β cells in patients with type 1 diabetes through recognition of a glucose-regulated preproinsulin epitope

Ania Skowera; Richard Ellis; Ruben Varela-Calvino; Sefina Arif; Guo Cai Huang; Cassie Van-Krinks; Anna Zaremba; Chloe L. Rackham; Jennifer S. Allen; Timothy Tree; Min Zhao; Colin Mark Dayan; Andrew K. Sewell; Wendy W. J. Unger; Jan W. Drijfhout; Ferry Ossendorp; Bart O. Roep; Mark Peakman

The final pathway of beta cell destruction leading to insulin deficiency, hyperglycemia, and clinical type 1 diabetes is unknown. Here we show that circulating CTLs can kill beta cells via recognition of a glucose-regulated epitope. First, we identified 2 naturally processed epitopes from the human preproinsulin signal peptide by elution from HLA-A2 (specifically, the protein encoded by the A*0201 allele) molecules. Processing of these was unconventional, requiring neither the proteasome nor transporter associated with processing (TAP). However, both epitopes were major targets for circulating effector CD8+ T cells from HLA-A2+ patients with type 1 diabetes. Moreover, cloned preproinsulin signal peptide-specific CD8+ T cells killed human beta cells in vitro. Critically, at high glucose concentration, beta cell presentation of preproinsulin signal epitope increased, as did CTL killing. This study provides direct evidence that autoreactive CTLs are present in the circulation of patients with type 1 diabetes and that they can kill human beta cells. These results also identify a mechanism of self-antigen presentation that is under pathophysiological regulation and could expose insulin-producing beta cells to increasing cytotoxicity at the later stages of the development of clinical diabetes. Our findings suggest that autoreactive CTLs are important targets for immune-based interventions in type 1 diabetes and argue for early, aggressive insulin therapy to preserve remaining beta cells.


Immunity | 2003

Peptide Diffusion, Protection, and Degradation in Nuclear and Cytoplasmic Compartments before Antigen Presentation by MHC Class I

Eric Reits; Alexander Griekspoor; Joost Neijssen; Tom A. Groothuis; Kees Jalink; Peter A. van Veelen; Hans Janssen; Jero Calafat; Jan W. Drijfhout; Jacques Neefjes

Antigenic peptides generated by the proteasome have to survive a peptidase-containing environment for presentation by MHC class I molecules. We have visualized the fate and dynamics of intracellular peptides in living cells. We show that peptides are distributed over two different but interconnected compartments, the cytoplasm and the nucleus, and diffuse rapidly through and between these compartments. Since TAP is excluded from the nuclear face of the nuclear envelope, nuclear peptides have to leave the nucleus to contact TAP. Thereby, these peptides encounter cytosolic peptidases that degrade peptides within seconds unless bound to chromatin. Since peptide degradation is far more efficient than translocation, many peptides will be lost for antigen presentation by MHC class I molecules.


Cancer Research | 2004

Human Papillomavirus Type 16-Positive Cervical Cancer Is Associated with Impaired CD4+ T-Cell Immunity against Early Antigens E2 and E6

Annemieke de Jong; Mariette I.E. van Poelgeest; Jeanette M. van der Hulst; Jan W. Drijfhout; Gert Jan Fleuren; Cornelis J. M. Melief; Gemma G. Kenter; Rienk Offringa; Sjoerd H. van der Burg

Cervical cancer is the possible outcome of genital infection with high-risk human papillomavirus (HPV) and is preceded by a phase of persistent HPV infection during which the host immune system fails to eliminate the virus. Fortunately, the majority of genital HPV infections are cleared before the development of (pre)malignant lesions. Analysis of CD4+ T-helper (Th) immunity against the E2, E6, and E7 antigens of HPV16 in healthy women revealed strong proliferative E2- and E6-specific responses associated with prominent IFN-γ and interleukin 5 secretion. This indicates that the naturally arising virus-induced immune response displays a mixed Th1/Th2 cytokine profile. Of all HPV16+ cervical cancer patients, approximately half failed to mount a detectable immune response against the HPV16-derived peptides. The other half of the patients showed impaired HPV16-specific proliferative responses, which generally lacked both IFN-γ and interleukin 5. This indicates that the HPV16-specific CD4+ T-cell response in cervical cancer patients is either absent or severely impaired, despite a relatively good immune status of the patients, as indicated by intact responses against recall antigens. It is highly conceivable that proper CD4+ T-cell help is important for launching an effective immune attack against HPV because infection of cervical epithelia by this virus is, at least initially, not accompanied by gross disturbance of this tissue and/or strong proinflammatory stimuli. Therefore, our observations concerning the lack of functional HPV16-specific CD4+ T-cell immunity in patients with cervical cancer offer a possible explanation for the development of this disease.


Immunity | 2004

A Major Role for TPPII in Trimming Proteasomal Degradation Products for MHC Class I Antigen Presentation

Eric Reits; Joost Neijssen; Carla Herberts; Willemien E. Benckhuijsen; Lennert Janssen; Jan W. Drijfhout; Jacques Neefjes

Intracellular proteins are degraded by the proteasome, and resulting peptides surviving cytoplasmic peptidase activity can be presented by MHC class I molecules. Here, we show that intracellular aminopeptidases degrade peptides within seconds, almost irrespectively of amino acid sequence. N- but not C-terminal extension increases the half-life of peptides until they are 15 amino acids long. Beyond 15 amino acids, peptides are exclusively trimmed by the peptidase TPPII, which displays both exo- and endopeptidase activity. Surprisingly, most proteasomal degradation products are handled by TPPII before presentation by MHC class I molecules. We define three distinct proteolytic activities during antigen processing in vivo. Proteasome-generated peptides relevant for antigen presentation are mostly 15 amino acids or longer. These require TPPII activity for further trimming before becoming substrates for other peptidases and MHC class I. The heterogeneous pool of aminopeptidases will process TPPII products into MHC class I peptides and beyond.

Collaboration


Dive into the Jan W. Drijfhout's collaboration.

Top Co-Authors

Avatar

Cornelis J. M. Melief

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Peter A. van Veelen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Frits Koning

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sjoerd H. van der Burg

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart O. Roep

Beckman Research Institute

View shared research outputs
Top Co-Authors

Avatar

Arnoud H. de Ru

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rienk Offringa

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ferry Ossendorp

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge