Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan Wagner is active.

Publication


Featured researches published by Jan Wagner.


Nature Cell Biology | 2007

Genome-scale RNAi profiling of cell division in human tissue culture cells

Ralf Kittler; Laurence Pelletier; Anne Kristine Heninger; Mikolaj Slabicki; Mirko Theis; Lukasz Miroslaw; Ina Poser; Steffen Lawo; Hannes Grabner; Karol Kozak; Jan Wagner; Vineeth Surendranath; Constance Richter; Wayne Bowen; Aimee L. Jackson; Bianca Habermann; Anthony A. Hyman; Frank Buchholz

Cell division is fundamental for all organisms. Here we report a genome-scale RNA-mediated interference screen in HeLa cells designed to identify human genes that are important for cell division. We have used a library of endoribonuclease-prepared short interfering RNAs for gene silencing and have used DNA content analysis to identify genes that induced cell cycle arrest or altered ploidy on silencing. Validation and secondary assays were performed to generate a nine-parameter loss-of-function phenoprint for each of the genes. These phenotypic signatures allowed the assignment of genes to specific functional classes by combining hierarchical clustering, cross-species analysis and proteomic data mining. We highlight the richness of our dataset by ascribing novel functions to genes in mitosis and cytokinesis. In particular, we identify two evolutionarily conserved transcriptional regulatory networks that govern cytokinesis. Our work provides an experimental framework from which the systematic analysis of novel genes necessary for cell division in human cells can begin.


Nature Methods | 2007

Genome-wide resources of endoribonuclease-prepared short interfering RNAs for specific loss-of-function studies.

Ralf Kittler; Vineeth Surendranath; Anne Kristin Heninger; Mikolaj Slabicki; Mirko Theis; Gabriele Putz; Kristin Franke; Antonio Caldarelli; Hannes Grabner; Karol Kozak; Jan Wagner; Effi Rees; Bernd Korn; Corina Frenzel; Christoph Sachse; Birte Sönnichsen; Jie Guo; Janell M. Schelter; Julja Burchard; Peter S. Linsley; Aimee L. Jackson; Bianca Habermann; Frank Buchholz

RNA interference (RNAi) has become an important technique for loss-of-gene-function studies in mammalian cells. To achieve reliable results in an RNAi experiment, efficient and specific silencing triggers are required. Here we present genome-wide data sets for the production of endoribonuclease-prepared short interfering RNAs (esiRNAs) for human, mouse and rat. We used an algorithm to predict the optimal region for esiRNA synthesis for every protein-coding gene of these three species. We created a database, RiDDLE, for retrieval of target sequences and primer information. To test this in silico resource experimentally, we generated 16,242 esiRNAs that can be used for RNAi screening in human cells. Comparative analyses with chemically synthesized siRNAs demonstrated a high silencing efficacy of esiRNAs and a 12-fold reduction of downregulated off-target transcripts as detected by microarray analysis. Hence, the presented esiRNA libraries offer an efficient, cost-effective and specific alternative to presently available mammalian RNAi resources.


The Astrophysical Journal | 2015

230 GHz VLBI Observations of M87: Event-horizon-scale Structure during an Enhanced Very-high-energy γ--Ray State in 2012

Kazunori Akiyama; Ru Sen Lu; Vincent L. Fish; Sheperd S. Doeleman; Avery E. Broderick; Jason Dexter; Kazuhiro Hada; Motoki Kino; Hiroshi Nagai; Mareki Honma; Michael D. Johnson; Juan C. Algaba; Keiichi Asada; Christiaan Brinkerink; R. Blundell; Geoffrey C. Bower; R. J. Cappallo; Geoffrey Crew; Matt Dexter; Sergio A. Dzib; Robert Freund; Per Friberg; M. A. Gurwell; Paul T. P. Ho; Makoto Inoue; T. P. Krichbaum; Laurent Loinard; David MacMahon; D. P. Marrone; James M. Moran

We report on 230 GHz (1.3 mm) VLBI observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0 ◦ as expected by physically-motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is � 1 × 10 10 K derived from the compact flux density of � 1 Jy and the angular size of � 40 µas � 5.5 Rs, which is broadly consistent with the peak brightness of the radio cores at 1-86 GHz located within � 10 2 Rs. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) -ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of �20-60 Rs. Subject headings: galaxies: active —galaxies: individual (M87) —galaxies: jets —radio continuum: galaxies —techniques: high angular resolution —techniques: interferometric


The Astrophysical Journal | 2016

PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES

Vincent L. Fish; Michael D. Johnson; Sheperd S. Doeleman; Avery E. Broderick; Dimitrios Psaltis; Ru-Sen Lu; Kazunori Akiyama; W. Alef; Juan C. Algaba; Keiichi Asada; Christopher Beaudoin; Alessandra Bertarini; L. Blackburn; R. Blundell; Geoffrey C. Bower; Christiaan Brinkerink; R. J. Cappallo; Andrew A. Chael; Richard A. Chamberlin; Chi-kwan Chan; Geoffrey Crew; Jason Dexter; Matt Dexter; Sergio A. Dzib; H. Falcke; Robert Freund; Per Friberg; Christopher Greer; M. A. Gurwell; Paul T. P. Ho

The Galactic Center black hole Sagittarius A* (Sgr A*) is a prime observing target for the Event Horizon Telescope (EHT), which can resolve the 1.3 mm emission from this source on angular scales comparable to that of the general relativistic shadow. Previous EHT observations have used visibility amplitudes to infer the morphology of the millimeter-wavelength emission. Potentially much richer source information is contained in the phases. We report on 1.3 mm phase information on Sgr A* obtained with the EHT on a total of 13 observing nights over 4 years. Closure phases, the sum of visibility phases along a closed triangle of interferometer baselines, are used because they are robust against phase corruptions introduced by instrumentation and the rapidly variable atmosphere. The median closure phase on a triangle including telescopes in California, Hawaii, and Arizona is nonzero. This result conclusively demonstrates that the millimeter emission is asymmetric on scales of a few Schwarzschild radii and can be used to break 180-degree rotational ambiguities inherent from amplitude data alone. The stability of the sign of the closure phase over most observing nights indicates persistent asymmetry in the image of Sgr A* that is not obscured by refraction due to interstellar electrons along the line of sight.


Earth, Planets and Space | 2008

Ultra-rapid UT1 measurement by e-VLBI

Mamoru Sekido; Hiroshi Takiguchi; Yasuhiro Koyama; Tetsuro Kondo; Rüdiger Haas; Jan Wagner; Jouko Ritakari; Shinobu Kurihara; Kensuke Kokado

The latency of UT1 measurement with Very Long Baseline Interferometry (VLBI) has been greatly reduced by using e-VLBI technology. VLBI observations on the baseline formed by the Kashima 34-m and the Onsala 20-m radio telescopes achieved ultra-rapid UT1 measurements, where the UT1 result was obtained within 30 min after the end of the observing session. A high speed network and a UDP-based data transfer protocol ‘Tsunami’ assisted the high data rate and long-distance data transfer from Onsala to Kashima. The accuracy of the UT1 value obtained from the 1-h single baseline e-VLBI experiment has been confirmed to be as the same level with the rapid combined solution of Bulletin-A. The newly developed technology is going to be transferred to the regular intensive VLBI sessions, and it is expected to contribute to the improved latency and accuracy of UT1 data.


Proceedings of the International Astronomical Union | 2009

Water masers in the Kronian system

Sergei V. Pogrebenko; Leonid I. Gurvits; Moshe Elitzur; Cristiano Batalli Cosmovici; Ian Avruch; S. Pluchino; Stelio Montebugnoli; E. Salerno; Giuseppe Maccaferri; Ari Mujunen; Jouko Ritakari; Guifre Molera; Jan Wagner; Minttu Uunila; Giuseppe Cimo; F. Schillirò; Marco Bartolini; J. A. Fernández; D. Lazzaro; D. Prialnik; R. Schulz

The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of UV emission from a background star (Hansen et al. 2006). Prompted by this discovery, we started an observational campaign for search of another manifestation of the water vapour in the Kronian system, its maser emission at the frequency of 22 GHz (1.35 cm wavelength). Observations with the 32 m Medicina radio telescope (INAF-IRA, Italy) started in 2006 using Mk5A data recording and the JIVE-Huygens software correlator. Later on, an on-line spectrometer was used at Medicina. The 14 m Metsahovi radio telescope (TKK-MRO, Finland) joined the observational campaign in 2008 using a locally developed data capture unit and software spectrometer. More than 300 hours of observations were collected in 2006-2008 campaign with the two radio telescopes. The data were analysed at JIVE using the Doppler tracking technique to compensate the observed spectra for the radial Doppler shift for various bodies in the Kronian system (Pogrebenko et al. 2009). Here we report the observational results for Hyperion, Titan, Enceladus and Atlas, and their physical interpretation. Encouraged by these results we started a campaign of follow up observations including other radio telescopes.


The Astrophysical Journal | 2016

The Megamaser Cosmology Project.IX. Black hole masses for three maser galaxies

F. Gao; James A. Braatz; M. J. Reid; J. J. Condon; Jenny E. Greene; C. Henkel; C. M. V. Impellizzeri; K. Y. Lo; Cheng-Yu Kuo; D. W. Pesce; Jan Wagner; Wen Zhao

As part of the Megamaser Cosmology Project (MCP), we present VLBI maps of nuclear water masers toward five galaxies. The masers originate in sub-parsec circumnuclear disks. For three of the galaxies, we fit Keplerian rotation curves to estimate their supermassive black hole (SMBH) masses, and determine (2.9


Astronomy and Astrophysics | 2015

First 230? GHz VLBI fringes on 3C 279 using the APEX Telescope (Research Note)

Jan Wagner; Alan L. Roy; T. P. Krichbaum; W. Alef; A. Bansod; Alessandra Bertarini; R. Güsten; D. A. Graham; Jeffrey A. Hodgson; R. Märtens; K. M. Menten; Dirk Muders; Helge Rottmann; G. Tuccari; A. Weiss; G. Wieching; Michael Wunderlich; J. A. Zensus; Juan Pablo Araneda; Oriel Arriagada; M. Cantzler; C. Duran; F. M. Montenegro-Montes; R. Olivares; Patricio Caro; Per Bergman; John Conway; Rüdiger Haas; Jan M. Johansson; Michael Lindqvist

\pm


arXiv: High Energy Astrophysical Phenomena | 2016

Zooming towards the Event Horizon - mm-VLBI today and tomorrow

T. P. Krichbaum; Alan L. Roy; Jan Wagner; Helge Rottmann; Jeffrey A. Hodgson; Alessandra Bertarini; W. Alef; J. A. Zensus; Alan P. Marscher; Svetlana G. Jorstad; Robert Freund; D. P. Marrone; Peter A. Strittmatter; L. M. Ziurys; R. Blundell; Jonathan Weintroub; K. Young; Vincent L. Fish; Sheperd S. Doeleman; Michael Bremer; S. Sanchez; L. Fuhrmann; E. Angelakis; V. Karamanavis

0.3)


Astronomy and Astrophysics | 2014

Observations and analysis of phase scintillation of spacecraft signal on the interplanetary plasma

G. Molera Calvés; Sergei V. Pogrebenko; G. Cimò; Dmitry Duev; Tatiana Bocanegra-Bahamón; Jan Wagner; J. Kallunki; P. de Vicente; Gerhard Kronschnabl; Rüdiger Haas; J. Quick; Giuseppe Maccaferri; G. Colucci; Wei Wang; W. J. Yang; Longfei Hao

\times~10^{6}M_\odot

Collaboration


Dive into the Jan Wagner's collaboration.

Top Co-Authors

Avatar

Jouko Ritakari

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar

Rüdiger Haas

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ari Mujunen

Helsinki University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamoru Sekido

National Institute of Information and Communications Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuro Kondo

National Institute of Information and Communications Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Hobiger

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Takiguchi

National Institute of Information and Communications Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge