Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jan zur Megede is active.

Publication


Featured researches published by Jan zur Megede.


Journal of Virology | 2000

Increased Expression and Immunogenicity of Sequence-Modified Human Immunodeficiency Virus Type 1 gag Gene

Jan zur Megede; Minchao Chen; Barbara Doe; Mary Schaefer; Catherine Greer; Mark Selby; Gillis Otten; Susan W. Barnett

ABSTRACT A major challenge for the next generation of human immunodeficiency virus (HIV) vaccines is the induction of potent, broad, and durable cellular immune responses. The structural protein Gag is highly conserved among the HIV type 1 (HIV-1) gene products and is believed to be an important target for the host cell-mediated immune control of the virus during natural infection. Expression of Gag proteins for vaccines has been hampered by the fact that its expression is dependent on the HIV Rev protein and the Rev-responsive element, the latter located on the env transcript. Moreover, the HIV genome employs suboptimal codon usage, which further contributes to the low expression efficiency of viral proteins. In order to achieve high-level Rev-independent expression of the Gag protein, the sequences encoding HIV-1SF2 p55Gag were modified extensively. First, the viral codons were changed to conform to the codon usage of highly expressed human genes, and second, the residual inhibitory sequences were removed. The resulting modified gag gene showed increases in p55Gag protein expression to levels that ranged from 322- to 966-fold greater than that for the native gene after transient expression of 293 cells. Additional constructs that contained the modified gag in combination with modifiedprotease coding sequences were made, and these showed high-level Rev-independent expression of p55Gag and its cleavage products. Density gradient analysis and electron microscopy further demonstrated that the modified gag andgagprotease genes efficiently expressed particles with the density and morphology expected for HIV virus-like particles. Mice immunized with DNA plasmids containing the modified gagshowed Gag-specific antibody and CD8+ cytotoxic T-lymphocyte (CTL) responses that were inducible at doses of input DNA 100-fold lower than those associated with plasmids containing the native gag gene. Most importantly, four of four rhesus monkeys that received two or three immunizations with modifiedgag plasmid DNA demonstrated substantial Gag-specific CTL responses. These results highlight the useful application of modifiedgag expression cassettes for increasing the potency of DNA and other gene delivery vaccine approaches against HIV.


Journal of Virology | 2000

Infection of Human Dendritic Cells by a Sindbis Virus Replicon Vector Is Determined by a Single Amino Acid Substitution in the E2 Glycoprotein

Jason P. Gardner; Ilya Frolov; Silvia Perri; Yaying Ji; Mary Lee MacKichan; Jan zur Megede; Minchao Chen; Barbara A. Belli; David A. Driver; Scott Sherrill; Catherine Greer; Gillis Otten; Susan W. Barnett; Margaret A. Liu; Thomas W. Dubensky; John M. Polo

ABSTRACT The ability to target antigen-presenting cells with vectors encoding desired antigens holds the promise of potent prophylactic and therapeutic vaccines for infectious diseases and cancer. Toward this goal, we derived variants of the prototype alphavirus, Sindbis virus (SIN), with differential abilities to infect human dendritic cells. Cloning and sequencing of the SIN variant genomes revealed that the genetic determinant for human dendritic cell (DC) tropism mapped to a single amino acid substitution at residue 160 of the envelope glycoprotein E2. Packaging of SIN replicon vectors with the E2 glycoprotein from a DC-tropic variant conferred a similar ability to efficiently infect immature human DC, whereupon those DC were observed to undergo rapid activation and maturation. The SIN replicon particles infected skin-resident mouse DC in vivo, which subsequently migrated to the draining lymph nodes and upregulated cell surface expression of major histocompatibility complex and costimulatory molecules. Furthermore, SIN replicon particles encoding human immunodeficiency virus type 1 p55Gag elicited robust Gag-specific T-cell responses in vitro and in vivo, demonstrating that infected DC maintained their ability to process and present replicon-encoded antigen. Interestingly, human and mouse DC were differentially infected by selected SIN variants, suggesting differences in receptor expression between human and murine DC. Taken together, these data illustrate the tremendous potential of using a directed approach in generating alphavirus vaccine vectors that target and activate antigen-presenting cells, resulting in robust antigen-specific immune responses.


Journal of Virology | 2010

Antibody-Mediated Protection against Mucosal Simian-Human Immunodeficiency Virus Challenge of Macaques Immunized with Alphavirus Replicon Particles and Boosted with Trimeric Envelope Glycoprotein in MF59 Adjuvant

Susan W. Barnett; Brian J. Burke; Yide Sun; Elaine Kan; Harold Legg; Ying Lian; Kristen Bost; Fengmin Zhou; Amanda Goodsell; Jan zur Megede; John Polo; John Donnelly; Jeffrey B. Ulmer; Gillis Otten; Christopher J. Miller; Michael Vajdy; Indresh K. Srivastava

ABSTRACT We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIVSF162P4 following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1SF162 gp140ΔV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIVSF162P4 (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.


Journal of Virology | 2005

Enhanced Potency of Plasmid DNA Microparticle Human Immunodeficiency Virus Vaccines in Rhesus Macaques by Using a Priming-Boosting Regimen with Recombinant Proteins

Gillis Otten; Mary Schaefer; Barbara Doe; Hong Liu; Indresh K. Srivastava; Jan zur Megede; Jina Kazzaz; Ying Lian; Manmohan Singh; Mildred Ugozzoli; David C. Montefiori; Mark G. Lewis; David A. Driver; Thomas W. Dubensky; John M. Polo; John Donnelly; Derek O'hagan; Susan W. Barnett; Jeffrey B. Ulmer

ABSTRACT DNA vaccines have been used widely in experimental primate models of human immunodeficiency virus (HIV), but their effectiveness has been limited. In this study, we evaluated three technologies for increasing the potency of DNA vaccines in rhesus macaques. These included DNA encoding Sindbis virus RNA replicons (pSINCP), cationic poly(lactide-co-glycolide) (PLG) microparticles for DNA delivery, and recombinant protein boosting. The DNA-based pSINCP replicon vaccines encoding HIV Gag and Env were approximately equal in potency to human cytomegalovirus (CMV) promoter-driven conventional DNA vaccines (pCMV). The PLG microparticle DNA delivery system was particularly effective at enhancing antibody responses induced by both pCMV and pSINCP vaccines and had less effect on T cells. Recombinant Gag and Env protein boosting elicited rapid and strong recall responses, in some cases to levels exceeding those seen after DNA or DNA/PLG priming. Of note, Env protein boosting induced serum-neutralizing antibodies and increased frequencies of gamma interferon-producing CD4 T cells severalfold. Thus, PLG microparticles are an effective means of delivering DNA vaccines in nonhuman primates, as demonstrated for two different types of DNA vaccines encoding two different antigens, and are compatible for use with DNA prime-protein boost regimens.


Journal of Virology | 2003

Variability at Human Immunodeficiency Virus Type 1 Subtype C Protease Cleavage Sites : an indication of viral fitness

Tulio de Oliveira; Susan Engelbrecht; Estrelita Janse van Rensburg; Michelle Gordon; Karen Bishop; Jan zur Megede; Susan W. Barnett; Sharon Cassol

ABSTRACT Naturally occurring polymorphisms in the protease of human immunodeficiency virus type 1 (HIV-1) subtype C would be expected to lead to adaptive (compensatory) changes in protease cleavage sites. To test this hypothesis, we examined the prevalences and patterns of cleavage site polymorphisms in the Gag, Gag-Pol, and Nef cleavage sites of C compared to those in non-C subtypes. Codon-based maximum-likelihood methods were used to assess the natural selection and evolutionary history of individual cleavage sites. Seven cleavage sites (p17/p24, p24/p2, NC/p1, NC/TFP, PR/RT, RT/p66, and p66/IN) were well conserved over time and in all HIV-1 subtypes. One site (p1/p6gag) exhibited moderate variation, and four sites (p2/NC, TFP/p6pol, p6pol/PR, and Nef) were highly variable, both within and between subtypes. Three of the variable sites are known to be major determinants of polyprotein processing and virion production. P2/NC controls the rate and order of cleavage, p6gag is an important phosphoprotein required for virion release, and TFP/p6pol, a novel cleavage site in the transframe domain, influences the specificity of Gag-Pol processing and the activation of protease. Overall, 58.3% of the 12 HIV-1 cleavage sites were significantly more diverse in C than in B viruses. When analyzed as a single concatenated fragment of 360 bp, 96.0% of group M cleavage site sequences fell into subtype-specific phylogenetic clusters, suggesting that they coevolved with the virus. Natural variation at C cleavage sites may play an important role, not only in regulation of the viral cycle but also in disease progression and response to therapy.


Journal of Virology | 2003

Induction of Broad and Potent Anti-Human Immunodeficiency Virus Immune Responses in Rhesus Macaques by Priming with a DNA Vaccine and Boosting with Protein-Adsorbed Polylactide Coglycolide Microparticles

Gillis Otten; Mary Schaefer; Catherine Greer; Maria Calderon-Cacia; Doris Coit; Jina Kazzaz; Angelica Medina-Selby; Mark Selby; Manmohan Singh; Mildred Ugozzoli; Jan zur Megede; Susan W. Barnett; Derek O'hagan; John Donnelly; Jeffrey B. Ulmer

ABSTRACT Several vaccine technologies were evaluated for their abilities to induce anti-human immunodeficiency virus Gag immune responses in rhesus macaques. While no vaccine alone was able to induce broad and strong immune responses, these were achieved by priming with Gag DNA and boosting with Gag protein adsorbed to polylactide coglycolide microparticles. This regimen elicited strong antibodies, helper T cells, and cytotoxic T lymphocytes and thus holds promise as an effective vaccination scheme.


Journal of Virology | 2005

Evaluation of Envelope Vaccines Derived from the South African Subtype C Human Immunodeficiency Virus Type 1 TV1 Strain

Ying Lian; Indresh K. Srivastava; V. Raúl Gómez-Román; Jan zur Megede; Yide Sun; Elaine Kan; Susan Hilt; Susan Engelbrecht; Sunee Himathongkham; Paul A. Luciw; Gillis Otten; Jeffrey B. Ulmer; John Donnelly; Dietmar Rabussay; David C. Montefiori; Estrelita Janse van Rensburg; Susan W. Barnett

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) subtype C infections are on the rise in Sub-Saharan Africa and Asia. Therefore, there is a need to develop an HIV vaccine capable of eliciting broadly reactive immune responses against members of this subtype. We show here that modified HIV envelope (env) DNA vaccines derived from the South African subtype C TV1 strain are able to prime for humoral responses in rabbits and rhesus macaques. Priming rabbits with DNA plasmids encoding V2-deleted TV1 gp140 (gp140TV1ΔV2), followed by boosting with oligomeric protein (o-gp140TV1ΔV2) in MF59 adjuvant, elicited higher titers of env-binding and autologous neutralizing antibodies than priming with DNA vaccines encoding the full-length TV1 env (gp160) or the intact TV1 gp140. Immunization with V2-deleted subtype B SF162 env and V2-deleted TV1 env together using a multivalent vaccine approach induced high titers of oligomeric env-binding antibodies and autologous neutralizing antibodies against both the subtypes B and C vaccine strains, HIV-1 SF162 and TV1, respectively. Low-level neutralizing activity against the heterologous South African subtype C TV2 strain, as well as a small subset of viruses in a panel of 13 heterologous primary isolates, was observed in some rabbits immunized with the V2-deleted vaccines. Immunization of rhesus macaques with the V2-deleted TV1 DNA prime/protein boost also elicited high titers of env-binding antibodies and moderate titers of autologous TV1 neutralizing antibodies. The pilot-scale production of the various TV1 DNA vaccine constructs and env proteins described here should provide an initial platform upon which to improve the immunogenicity of these subtype C HIV envelope vaccines.


AIDS | 2004

Immunogenicity of HIV-1 Env and Gag in baboons using a DNA prime/protein boost regimen.

Louisa Leung; Indresh K. Srivastava; Elaine Kan; Harold Legg; Yide Sun; Catherine Greer; David C. Montefiori; Jan zur Megede; Susan W. Barnett

Objectives: To evaluate the immunogenicity of sequence-modified HIV env and gag in baboons using DNA prime and protein boost strategy. Methods: Synthetic sequence-modified HIV gene cassettes were constructed that expressed three different forms of Env proteins, gp140, gp140mut and gp140TM, plus or minus a mutation in the protease-cleavage site. These plasmids were used to immunize baboons (Papio cynocephalus). A group of baboons was also immunized with both env and gag DNA followed by p55Gag virus-like particles (VLP) boost. Results: Modest antibody responses and low or no lymphoproliferative responses were observed following multiple DNA immunizations. In contrast, strong antibodies and substantial antigen-specific lymphoproliferative responses were seen following booster immunizations with oligomeric Env protein (o-gp140US4) in MF59. Neutralizing antibody responses were scored against T cell line adapted HIV-1 strains after the protein boosters, but neutralizing responses were low or absent against homologous and heterologous primary isolate strains. In the group receiving both gag and env vaccines, modest antigen-specific antibody and lymphoproliferative responses were scored after the DNA immunizations; these responses were enhanced several-fold upon boosting with the VLP preparations. The addition of Gag antigen did not interfere with Env-specific antibody responses, but there was a negative effect on the levels of Env-specific lymphoproliferation. Conclusions: These results highlight the importance of improving the potency of HIV DNA vaccines by enhanced DNA delivery and prime-boost vaccine technologies to generate more robust immune responses in larger animal models. In addition, care must be taken when immunizations with Env and Gag antigens are performed together.


Journal of Virology | 2003

Expression and Immunogenicity of Sequence-Modified Human Immunodeficiency Virus Type 1 Subtype B pol and gagpol DNA Vaccines

Jan zur Megede; Gillis Otten; Barbara Doe; Hong Liu; Louisa Leung; Jeffrey B. Ulmer; John Donnelly; Susan W. Barnett

ABSTRACT Control of the worldwide AIDS pandemic may require not only preventive but also therapeutic immunization strategies. To meet this challenge, the next generation of human immunodeficiency virus type 1 (HIV-1) vaccines must stimulate broad and durable cellular immune responses to multiple HIV antigens. Results of both natural history studies and virus challenge studies with macaques indicate that responses to both Gag and Pol antigens are important for the control of viremia. Previously, we reported increased Rev-independent expression and improved immunogenicity of DNA vaccines encoding sequence-modified Gag derived from the HIV-1SF2 strain (J. zur Megede, M. C. Chen, B. Doe, M. Schaefer, C. E. Greer, M. Selby, G. R. Otten, and S. W. Barnett, J. Virol. 74: 2628-2635, 2000). Here we describe results of expression and immunogenicity studies conducted with novel sequence-modified HIV-1SF2 GagPol and Pol vaccine antigens. These Pol antigens contain deletions in the integrase coding region and were mutated in the reverse transcriptase (RT) coding region to remove potentially deleterious enzymatic activities. The resulting Pol sequences were used alone or in combination with sequence-modified Gag. In the latter, the natural translational frameshift between the Gag and Pol coding sequences was either retained or removed. Smaller, in-frame fusion gene cassettes expressing Gag plus RT or protease plus RT also were evaluated. Expression of Gag and Pol from GagPol fusion gene cassettes appeared to be reduced when the HIV protease was active. Therefore, additional constructs were evaluated in which mutations were introduced to attenuate or inactivate the protease activity. Nevertheless, when these constructs were delivered to mice as DNA vaccines, similar levels of CD8+ T-cell responses to Gag and Pol epitopes were observed regardless of the level of protease activity. Overall, the cellular immune responses against Gag induced in mice immunized with multigenic gagpol plasmids were similar to those observed in mice immunized with the plasmid encoding Gag alone. Furthermore, all of the sequence-modified pol and gagpol plasmids expressed high levels of Pol-specific antigens in a Rev-independent fashion and were able to induce potent Pol-specific T- and B-cell responses in mice. These results support the inclusion of a gagpol in-frame fusion gene in future HIV vaccine approaches.


Virology | 2003

Gp120 stability on HIV-1 virions and Gag-Env pseudovirions is enhanced by an uncleaved Gag core.

Jason Hammonds; Xuemin Chen; Lingmei Ding; Timothy Fouts; Anthony De Vico; Jan zur Megede; Susan W. Barnett; Paul Spearman

Human immunodeficiency virus type-1 (HIV-1) particles incorporate a trimeric envelope complex (Env) made of gp120 (SU) and gp41 (TM) heterodimers. It has been previously established that soluble CD4 (sCD4) interaction leads to shedding of gp120 from viral particles, and that gp120 may also be easily lost from virions during incubation or particle purification procedures. In the design of HIV particle or pseudovirion-based HIV vaccines, it may be important to develop strategies to maximize the gp120 content of particles. We analyzed the gp120 retention of HIV-1 laboratory-adapted isolates and primary isolates following incubation with sCD4 and variations in temperature. NL4-3 shed gp120 readily in a temperature- and sCD4-dependent manner. Surprisingly, inactivation of the viral protease led to markedly reduced shedding of gp120. Gp120 shedding was shown to vary markedly between HIV-1 strains, and was not strictly determined by whether the isolate was adapted to growth on immortalized T cell lines or was a primary isolate. Pseudovirions produced by expression of codon-optimized gag and env genes also demonstrated enhanced gp120 retention when an immature core structure was maintained. Pseudovirions of optimal stability were produced through a combination of an immature Gag protein core and a primary isolate Env. These results support the feasibility of utilizing pseudovirion particles as immunogens for the induction of humoral responses directed against native envelope structures.

Collaboration


Dive into the Jan zur Megede's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge