Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jana Alonso is active.

Publication


Featured researches published by Jana Alonso.


PLOS ONE | 2010

Proteins Involved in Platelet Signaling Are Differentially Regulated in Acute Coronary Syndrome: A Proteomic Study

Andrés F. Parguiña; Lilian Grigorian-Shamajian; Rosa M. Agra; Elvis Teijeira-Fernández; Isaac Rosa; Jana Alonso; Juan E. Viñuela-Roldán; Ana Seoane; José Ramón González-Juanatey; Ángel García

Background Platelets play a fundamental role in pathological events underlying acute coronary syndrome (ACS). Because platelets do not have a nucleus, proteomics constitutes an optimal approach to follow platelet molecular events associated with the onset of the acute episode. Methodology/Principal Findings We performed the first high-resolution two-dimensional gel electrophoresis-based proteome analysis of circulating platelets from patients with non-ST segment elevation ACS (NSTE-ACS). Proteins were identified by mass spectrometry and validations were by western blotting. Forty protein features (corresponding to 22 unique genes) were found to be differentially regulated between NSTE-ACS patients and matched controls with chronic ischemic cardiopathy. The number of differences decreased at day 5 (28) and 6 months after the acute event (5). Interestingly, a systems biology approach demonstrated that 16 of the 22 differentially regulated proteins identified are interconnected as part of a common network related to cell assembly and organization and cell morphology, processes very related to platelet activation. Indeed, 14 of those proteins are either signaling or cytoskeletal, and nine of them are known to participate in platelet activation by αIIbβ3 and/or GPVI receptors. Several of the proteins identified participate in platelet activation through post-translational modifications, as shown here for ILK, Src and Talin. Interestingly, the platelet-secreted glycoprotein SPARC was down-regulated in NSTE-ACS patients compared to stable controls, which is consistent with a secretion process from activated platelets. Conclusions/Significance The present study provides novel information on platelet proteome changes associated with platelet activation in NSTE-ACS, highlighting the presence of proteins involved in platelet signaling. This investigation paves the way for future studies in the search for novel platelet-related biomarkers and drug targets in ACS.


Biochemistry | 2011

Probing structural differences between PrPC and PrPSc by surface nitration and acetylation: evidence of conformational change in the C-terminus

Binbin Gong; Adriana Ramos; Ester Vázquez-Fernández; Christopher J. Silva; Jana Alonso; Zengshan Liu; Jesús R. Requena

We used two chemical modifiers, tetranitromethane (TNM) and acetic anhydride (Ac(2)O), which specifically target accessible tyrosine and lysine residues, respectively, to modify recombinant Syrian hamster PrP(90-231) [rSHaPrP(90-231)] and SHaPrP 27-30, the proteinase K-resistant core of PrP(Sc) isolated from brain of scrapie-infected Syrian hamsters. Our aim was to find locations of conformational change. Modified proteins were subjected to in-gel proteolytic digestion with trypsin or chymotrypsin and subsequent analysis by mass spectrometry (MALDI-TOF). Several differences in chemical reactivity were observed. With TNM, the most conspicuous reactivity difference seen involves peptide E(221)-R(229) (containing Y(225) and Y(226)), which in rSHaPrP(90-231) was much more extensively modified than in SHaPrP 27-30; peptide H(111)-R(136), containing Y(128), was also more modified in rSHaPrP(90-231). Conversely, peptides Y(149)-R(151), Y(157)-R(164), and R(151)-Y(162) suffered more extensive modification in SHaPrP 27-30. Acetic anhydride modified very extensively peptide G(90)-K(106), containing K(101), K(104), K(106), and the amino terminus, in both rSHaPrP(90-231) and SHaPrP 27-30. These results suggest that (1) SHaPrP 27-30 exhibits important conformational differences in the C-terminal region with respect to rSHaPrP(90-231), resulting in the loss of solvent accessibility of Y(225) and Y(226), very solvent-exposed in the latter conformation; because other results suggest preservation of the two C-terminal helices, this might mean that these are tightly packed in SHaPrP 27-30. (2) On the other hand, tyrosines contained in the stretch spanning approximately Y(149)-R(164) are more accessible in SHaPrP 27-30, suggesting rearrangements in α-helix H1 and the short β-sheet of rSHaPrP(90-231). (3) The amino-terminal region of SHaPrP 27-30 is very accessible. These data should help in the validation and construction of structural models of PrP(Sc).


PLOS ONE | 2012

Structural Organization of Mammalian Prions as Probed by Limited Proteolysis

Ester Vázquez-Fernández; Jana Alonso; Miguel A. Pastrana; Adriana Ramos; Lothar Stitz; Enric Vidal; Irina Dynin; Benjamin Petsch; Christopher J. Silva; Jesús R. Requena

Elucidation of the structure of PrPSc continues to be one major challenge in prion research. The mechanism of propagation of these infectious agents will not be understood until their structure is solved. Given that high resolution techniques such as NMR or X-ray crystallography cannot be used, a number of lower resolution analytical approaches have been attempted. Thus, limited proteolysis has been successfully used to pinpoint flexible regions within prion multimers (PrPSc). However, the presence of covalently attached sugar antennae and glycosylphosphatidylinositol (GPI) moieties makes mass spectrometry-based analysis impractical. In order to surmount these difficulties we analyzed PrPSc from transgenic mice expressing prion protein (PrP) lacking the GPI membrane anchor. Such animals produce prions that are devoid of the GPI anchor and sugar antennae, and, thereby, permit the detection and location of flexible, proteinase K (PK) susceptible regions by Western blot and mass spectrometry-based analysis. GPI-less PrPSc samples were digested with PK. PK-resistant peptides were identified, and found to correspond to molecules cleaved at positions 81, 85, 89, 116, 118, 133, 134, 141, 152, 153, 162, 169 and 179. The first 10 peptides (to position 153), match very well with PK cleavage sites we previously identified in wild type PrPSc. These results reinforce the hypothesis that the structure of PrPSc consists of a series of highly PK-resistant β-sheet strands connected by short flexible PK-sensitive loops and turns. A sizeable C-terminal stretch of PrPSc is highly resistant to PK and therefore perhaps also contains β-sheet secondary structure.


Scientific Reports | 2015

CILAIR-Based Secretome Analysis of Obese Visceral and Subcutaneous Adipose Tissues Reveals Distinctive ECM Remodeling and Inflammation Mediators

Arturo Roca-Rivada; Susana B. Bravo; Diego Pérez-Sotelo; Jana Alonso; Ana Castro; Ivan Baamonde; Javier Baltar; Felipe F. Casanueva; Maria Pardo

In the context of obesity, strong evidences support a distinctive pathological contribution of adipose tissue depending on its anatomical site of accumulation. Therefore, subcutaneous adipose tissue (SAT) has been lately considered metabolically benign compared to visceral fat (VAT), whose location is associated to the risk of developing cardiovascular disease, insulin resistance, and other associated comorbidities. Under the above situation, the chronic local inflammation that characterizes obese adipose tissue, has acquired a major role on the pathogenesis of obesity. In this work, we have analyzed for the first time human obese VAT and SAT secretomes using an improved quantitative proteomic approach for the study of tissue secretomes, Comparison of Isotope-Labeled Amino acid Incorporation Rates (CILAIR). The use of double isotope-labeling-CILAIR approach to analyze VAT and SAT secretomes allowed the identification of location-specific secreted proteins and its differential secretion. Additionally to the very high percentage of identified proteins previously implicated in obesity or in its comorbidities, this approach was revealed as a useful tool for the study of the obese adipose tissue microenvironment including extracellular matrix (ECM) remodeling and inflammatory status. The results herein presented reinforce the fact that VAT and SAT depots have distinct features and contribute differentially to metabolic disease.


Blood | 2012

A detailed proteomic analysis of rhodocytin-activated platelets reveals novel clues on the CLEC-2 signalosome: implications for CLEC-2 signaling regulation

Andrés F. Parguiña; Jana Alonso; Isaac Rosa; Paula Vélez; María J. González-López; Esteban Guitián; Johannes A. Eble; María Isabel Loza; Ángel García

C-type lectin-like receptor 2 (CLEC-2) is an essential platelet-activating receptor in hemostasis and thrombosis that is activated by the snake venom rhodocytin. We present here a differential proteomic analysis of basal and rhodocytin-activated platelets with the aim of providing novel clues on CLEC-2 signaling regulation. Proteome analysis was based on 2D-DIGE, phosphotyrosine immunoprecipitations followed by 1D SDS-PAGE and mass spectrometry. Protein-protein interactions were studied by coimmunoprecipitations and a systems biology approach. Overall, we identified 132 proteins differentially regulated after CLEC-2 platelet activation, including most of the major players reported so far in the signaling cascade. In addition, we identified various proteins not previously known to participate in CLEC-2 signaling, such as the adapters Dok-2 and ADAP, tyrosine kinase Fer, and tyrosine phosphatase SHIP-1. We also report an increased association between Dok-2 and SHIP-1 in rhodocytin-stimulated platelets, which might negatively regulate CLEC-2 signaling. Moreover, we also present a comparative analysis of proteomic data for CLEC-2 and glycoprotein VI signaling. We think that our data provide thrombosis-relevant information on CLEC-2 signaling regulation, contributing to a better understanding of this important signaling cascade.


International Journal of Cardiology | 2011

High-resolution two-dimensional gel electrophoresis analysis of atrial tissue proteome reveals down-regulation of fibulin-1 in atrial fibrillation☆

Ángel García; Sonia Eiras; Andrés F. Parguiña; Jana Alonso; Isaac Rosa; Antonio Salgado-Somoza; Trinidad Yolanda Rico; Elvis Teijeira-Fernández; José Ramón González-Juanatey

BACKGROUND Atrial fibrillation (AF) is the most common cardiac arrhythmia found in clinical practice. We combined high-resolution two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to compare the atrial proteome of subjects with AF versus controls with sinus rhythm (SR). Our aim was to identify novel differentially regulated proteins that could be related to the development of the arrhythmia. METHODS Human atrial appendage tissue samples from patients undergoing heart surgery with AF or SR were analyzed by high-resolution 2-DE. Proteins of interest were identified by MS and validated by western blotting and inmunohistochemistry. RESULTS Our analysis allowed the detection of over 2300 protein spots per gel. Following differential image analysis, we found 22 spot differences between the AF and SR groups in the 4-7 isoelectric point range, leading to the identification of 15 differentially regulated proteins. The main group of proteins identified was that of heat shock proteins (HSPs), including TRAP-1, HspB3, HspΒ6 and AHA1. Some of the differences detected between AF and SR for the above proteins were due to post-translational modifications. In addition, we identified the structural protein fibulin-1 as down-regulated in atrial tissue from AF patients. CONCLUSIONS High-resolution 2-DE analysis of human atrial tissue revealed that AF is associated with changes in structural proteins and an important number of HSPs. The lower expression of the structural protein fibulin-1 in atrial tissue from AF patients might reflect the myocardial structural changes that take place in the arrhythmia.


Journal of Cellular and Molecular Medicine | 2012

Cardiac protein changes in ischaemic and dilated cardiomyopathy: a proteomic study of human left ventricular tissue

E. Roselló-Lletí; Jana Alonso; R. Cortés; Luis Almenar; Luis Martínez-Dolz; Ignacio Sánchez-Lázaro; Francisca Lago; Inmaculada Azorin; José Ramón González Juanatey; M. Portolés; Miguel Rivera

The development of heart failure (HF) is characterized by progressive alteration of left ventricle structure and function. Previous works on proteomic analysis in cardiac tissue from patients with HF remain scant. The purpose of our study was to use a proteomic approach to investigate variations in protein expression of left ventricle tissue from patients with ischaemic (ICM) and dilated cardiomyopathy (DCM). Twenty‐four explanted human hearts, 12 from patients with ICM and 12 with DCM undergoing cardiac transplantation and six non‐diseased donor hearts (CNT) were analysed by 2DE. Proteins of interest were identified by mass spectrometry and validated by Western blotting and immunofluorescence. We encountered 35 differentially regulated spots in the comparison CNT versus ICM, 33 in CNT versus DCM, and 34 in ICM versus DCM. We identified glyceraldehyde 3‐phophate dehydrogenase up‐regulation in both ICM and DCM, and alpha‐crystallin B down‐regulation in both ICM and DCM. Heat shock 70 protein 1 was up‐regulated only in ICM. Ten of the eleven differentially regulated proteins common to both aetiologies are interconnected as a part of a same network. In summary, we have shown by proteomics analysis that HF is associated with changes in proteins involved in the cellular stress response, respiratory chain and cardiac metabolism. Although we found altered expression of eleven proteins common to both ischaemic and dilated aetiology, we also observed different proteins altered in both groups. Furthermore, we obtained that seven of these eleven proteins are involved in cell death and apoptosis processes, and therefore in HF progression.


Journal of Molecular Endocrinology | 2015

Key structural and functional differences between early and advanced glycation products

Beatriz Paradela-Dobarro; Bruno K. Rodiño-Janeiro; Jana Alonso; Sergio Raposeiras-Roubín; Mercedes González-Peteiro; José Ramón González-Juanatey; Ezequiel Álvarez

Most of the studies on advanced glycation end products (AGE) have been carried out with uncharacterized mixtures of AGE, so the observed effects cannot be linked to defined structures. Therefore, we analysed the structural differences between glycated human serum albumin (gHSA), a low glycated protein, and AGE-human serum albumin (AGE-HSA), a high glycated protein, and we compared their effects on endothelial functionality. Specifically, we characterized glycation and composition on both early and advanced stage glycation products of gHSA and AGE-HSA by using the MALDI-TOF-mass spectrometry assay. Furthermore, we studied the effects of both types of glycation products on reactive oxygen species (ROS) production and in the expression of vascular and intercellular cell adhesion molecules (VCAM-1 and ICAM-1) on human umbilical endothelial cells (HUVEC). We also measured the adhesion of peripheral blood mononuclear cells (PBMC) to HUVEC. Low concentrations of gHSA enhanced long-lasting ROS production in HUVEC, whereas lower concentrations of AGE-HSA caused the anticipation of the induced extracellular ROS production. Both gHSA and AGE-HSA up-regulated the expression of VCAM-1 and ICAM-1 at mRNA levels. Nevertheless, only AGE-HSA increased protein levels and enhanced the adhesion of PBMC to HUVEC monolayers. Functional differences were observed between gHSA and AGE-HSA, causing the latter an anticipation of the pro-oxidant effects in comparison to gHSA. Moreover, although both molecules induced genetic up-regulation of adhesion molecules in HUVEC, only the high glycated protein functionally increased mononuclear cell adhesion to endothelial monolayers. These observations could have important clinical consequences in the development of diabetic vascular complications.


Human Molecular Genetics | 2014

Neuropeptide precursor VGF is genetically associated with social anhedonia and underrepresented in the brain of major mental illness: its downregulation by DISC1

Adriana Ramos; Carmen Rodríguez-Seoane; Isaac Rosa; Svenja V. Trossbach; Alfredo Ortega-Alonso; Liisa Tomppo; Jesper Ekelund; Juha Veijola; Marjo-Riitta Järvelin; Jana Alonso; Sonia Veiga; Akira Sawa; William Hennah; Ángel García; Carsten Korth; Jesús R. Requena

In a large Scottish pedigree, disruption of the gene coding for DISC1 clearly segregates with major depression, schizophrenia and related mental conditions. Thus, study of DISC1 may provide a clue to understand the biology of major mental illness. A neuropeptide precursor VGF has potent antidepressant effects and has been reportedly associated with bipolar disorder. Here we show that DISC1 knockdown leads to a reduction of VGF, in neurons. VGF is also downregulated in the cortices from sporadic cases with major mental disease. A positive correlation of VGF single-nucleotide polymorphisms (SNPs) with social anhedonia was also observed. We now propose that VGF participates in a common pathophysiology of major mental disease.


Journal of Biosciences | 2016

Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level

Vanessa García-Rúa; Sandra Feijóo-Bandín; María García-Vence; Alana Aragón-Herrera; Susana B. Bravo; Diego Rodríguez-Penas; Ana Mosquera-Leal; Pamela V. Lear; John Parrington; Jana Alonso; E. Roselló-Lletí; M. Portolés; Miguel Rivera; José Ramón González-Juanatey; Francisca Lago

Two-pore channels (TPCs or TPCNs) are novel voltage-gated ion channels that have been postulated to act as Ca2+ and/or Na+ channels expressed exclusively in acidic organelles such as endosomes and lysosomes. TPCNs participate in the regulation of diverse biological processes and recently have been proposed to be involved in the pathophysiology of metabolic disorders such as obesity, fatty liver disease and type 2 diabetes mellitus. Due to the importance of these pathologies in the development of cardiovascular diseases, we aimed to study the possible role of two-pore channel 1 (TPCN1) in the regulation of cardiac metabolism. To explore the cardiac function of TPCN1, we developed proteomic approaches as 2-DE-MALDI-MS and LC-MALDI-MS in the cardiac left ventricle of TPCN1 KO and WT mice, and found alterations in several proteins implicated in glucose and fatty acid metabolism in TPCN1 KO vs. WT mice. The results confirmed the altered expression of HFABP, a key fatty acid transport protein, and of enolase and PGK1, the key enzymes in the glycolytic process. Finally, in vitro experiments performed in neonatal rat cardiomyocytes, in which TPCN1 was silenced using siRNAs, confirmed that the downregulation of TPCN1 gene expression increased 2-deoxy-D-[3H]-glucose uptake and GLUT4 mobilization into cell peripherals in cardiac cells. Our results are the first to suggest a potential role for TPCNs in cardiac metabolism regulation.

Collaboration


Dive into the Jana Alonso's collaboration.

Top Co-Authors

Avatar

Isaac Rosa

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

José Ramón González-Juanatey

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Andrés F. Parguiña

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Ángel García

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosa M. Agra

Group Health Research Institute

View shared research outputs
Top Co-Authors

Avatar

Elvis Teijeira-Fernández

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

Luisa M. Seoane

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omar Al-Massadi

Instituto de Salud Carlos III

View shared research outputs
Researchain Logo
Decentralizing Knowledge