Jana Cela
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jana Cela.
Physiologia Plantarum | 2011
Hasna Ellouzi; Karim Ben Hamed; Jana Cela; Sergi Munné-Bosch; Chedly Abdelly
Early changes in physiological and oxidative status induced by salt stress were monitored in two Brassicaceae plants differing in their tolerance to salinity, Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Growth response and antioxidant defense of C. maritima under 400 mM NaCl were compared with those of A. thaliana exposed to 100 mM NaCl. Salinity induced early growth reduction that is less pronounced in C. maritima than in A. thaliana. Maximum hydrogen peroxide (H₂O₂) level occurred in the leaves of both species 4 h after the onset of salt treatment. A rapid decline in H₂O₂ concentration was observed thereafter in C. maritima, whereas it remained high in A. thaliana. Correlatively, superoxide dismutase, catalase and peroxidase activities increased at 4 h of treatment in C. maritima and decreased thereafter. However, the activity of these enzymes remained higher in treated plants than that in controls, regardless of the duration of treatment, in A. thaliana. The concentrations of malondialdehyde (MDA) reached maximum values at 24 h of salt stress in both species. Again, MDA levels decreased later in C. maritima, but remained high in A. thaliana. The contents of α-tocopherol remained constant during salt stress in C. maritima and decreased during the first 24 h of salt stress and then remained low in A. thaliana. The results clearly showed that C. maritima, in contrast to A. thaliana, can rapidly evolve physiological and antioxidant mechanisms to adapt to salt and manage the oxidative stress. This may explain, at least partially, the difference in salt tolerance between halophytes and glycophytes.
Plant and Cell Physiology | 2011
Jana Cela; Caren Chang; Sergi Munné-Bosch
Tocopherols are antioxidants found in chloroplasts of leaves, and it is a matter of current debate whether or not they can affect signaling and gene expression in plant cells. For insight into the possible effects of altered tocopherol composition in chloroplasts on gene expression in the nucleus, the expression of ethylene biosynthesis, perception and signaling genes was investigated in vte1 and vte4 Arabidopsis thaliana mutants, which are impaired in tocopherol (vitamin E) biosynthesis. Changes in gene expression were measured in plants exposed to either salt or water stress, and in young and mature leaves of vte1 and vte4 mutants, which lack tocopherol cyclase and γ-tocopherol methyltransferase, respectively. While transcript levels of ethylene signaling genes in the vte1 mutant and the wild type were similar in all tested conditions, major changes in gene expression occurred in the vte4 mutant, particularly in mature leaves (compared with young leaves) and under salt stress. Accumulation of γ- instead of α-tocopherol in this mutant led to elevated transcript levels of ethylene signaling pathway genes (particularly CTR1, EIN2, EIN3 and ERF1) in mature leaves of control plants. However, with salt treatment, transcript levels of most of these genes remained constant or dropped in the vte4 mutant, while they were dramatically induced in the wild type and the vte1 mutant. Furthermore, under salt stress, leaf age-induced jasmonic acid accumulated in both the vte1 mutant and the wild type, but not in the vte4 mutant. It is concluded that jasmonic acid and ethylene signaling pathways are down-regulated in mature leaves of salt-stressed vte4 plants.
Journal of Plant Physiology | 2009
Sergi Munné-Bosch; Vasiliki Falara; Irene Pateraki; Marta López-Carbonell; Jana Cela; Angelos K. Kanellis
The goal of the present research was to obtain new insights into the mechanisms underlying drought stress resistance in plants. Specifically, we evaluated changes in the expression of genes encoding enzymes involved in isoprenoid biosynthesis, together with the levels of the corresponding metabolites (chlorophylls, carotenoids, tocopherols and abscisic acid), in a drought-resistant Mediterranean shrub, Cistus creticus grown under Mediterranean field conditions. Summer drought led to reductions in the relative leaf water content (RWC) by 25%, but did not alter the maximum efficiency of PSII, indicating the absence of damage to the photosynthetic apparatus. While the expression of genes encoding C. creticus chlorophyll a oxygenase/chlorophyll b synthase (CAO) and phytoene synthase (PSY) were not affected by water deficit, the genes encoding homogentisate phytyl-transferase (HPT) and 9-cis-epoxycarotenoid dioxygenase (NCED) were induced in water-stressed (WS) plants. Drought-induced changes in gene expression were observed at early stages of drought and were strongly correlated with levels of the corresponding metabolites, with simultaneous increases in abscisic acid and alpha-tocopherol levels of up to 4-fold and 62%, respectively. Furthermore, alpha-tocopherol levels were strongly positively correlated with abscisic acid contents, but not with the levels of jasmonic acid and salicylic acid. We conclude that the abscisic acid and tocopherol biosynthetic pathway may be regulated at the transcript level in WS C. creticus plants, and that the genes encoding HPT and NCED may play a key role in the drought stress resistance of this Mediterranean shrub by modulating abscisic acid and tocopherol biosynthesis.
Phytochemistry | 2014
Jerzy Kruk; Renata Szymańska; Jana Cela; Sergi Munné-Bosch
Plastochromanol-8 (PC-8) is an antioxidant that, together with tocopherols and tocotrienols, belongs to the group of tocochromanols. Plastochromanol-8 has been found to occur in several plant species, including mosses, and lichens. PC-8 is found in seeds, leaves and other organs of higher plants. In leaves, PC-8 is restricted to chloroplasts. The identification of tocopherol cyclase (VTE1) as the key enzyme in the biosynthesis of PC-8 suggests that plastoglobules are the primary site of its biosynthesis. Other enzymes related with PC-8 biosynthesis in plastoglobules include: NDC1 and the ABC1-like kinase ABC1K3. The antioxidant properties of PC-8 are similar to those of other chloroplastic antioxidants in polar solvents but considerably they are enhanced in hydrophobic environments, suggesting that the unsaturated side chain performs some quenching activity. As a result of a non-enzymatic reaction, singlet oxygen can oxidize any of the 8 double bonds in the side chain of PC-8, giving at least eight hydroxy-PC-8 isomers. This review summarizes current evidence of a widespread distribution of PC-8 in photosynthetic organisms, as well as the contribution of PC-8 to the pool of lipid-soluble antioxidants in both leaves and seeds.
Journal of Plant Physiology | 2012
María Amparo Asensi-Fabado; Jana Cela; Maren Müller; Laia Arrom; Caren Chang; Sergi Munné-Bosch
To better understand the role of ethylene signaling in plant stress tolerance, salt-induced changes in gene expression levels of ethylene biosynthesis, perception and signaling genes were measured in Arabidopsis thaliana plants exposed to 15 days of salinity. Among the genes analyzed, EIN3 showed the highest expression level increase under salt stress, suggesting a key role for this ethylene-signaling component in response to salt stress. Therefore, we analyzed the salt stress response over 15 days (by adding 100 mM NaCl to the nutrient solution) in the ein3-1 mutant compared to the wild-type (Col-0) in terms of growth, oxidative stress markers (lipid peroxidation, foliar pigments and low-molecular-weight antioxidants) and levels of growth- and stress-related phytohormones (including cytokinins, auxins, gibberellins, abscisic acid, jasmonic acid and salicylic acid). The ein3-1 mutant grew similarly to wild-type plants both under control and salt stress conditions, which was associated with a differential time course evolution in the levels of the cytokinins zeatin and zeatin riboside, and the auxin indole-3-acetic acid between the ein3-1 mutant and the wild-type. Despite showing no signs of physiological deterioration under salt stress (in terms of rosette biomass, leaf water and pigment contents, and PSII efficiency) the ein3-1 mutant showed enhanced lipid peroxidation under salt stress, as indicated by 2.4-fold increase in both malondialdehyde and jasmonic acid contents compared to the wild-type. We conclude that, at moderate doses of salinity, partial insensitivity to ethylene might be compensated by changes in endogenous levels of other phytohormones and lipid peroxidation-derived signals in the ein3-1 mutant exposed to salt stress, but at the same time, this mutant shows higher oxidative stress under salinity than the wild-type.
FEBS Letters | 2009
Jana Cela; Jon Falk; Sergi Munné-Bosch
Tocopherol biosynthesis was investigated in ein3‐1, etr1‐1 and eto1‐1 mutants of Arabidopsis thaliana, which show a defect in ethylene signaling, perception and over‐produce ethylene, respectively. A mutation in the EIN3 gene delayed the water‐stress related increase in α‐tocopherol and caused a reduction in the levels of this antioxidant by ca. 30% compared to the wild type. In contrast to the wild type and ein3‐1 mutants, both etr1‐1 and eto1‐1 mutants showed a sharp (up to 5‐fold) increase in α‐tocopherol levels during leaf aging. It is concluded that ethylene perception and signaling may be involved in the regulation of tocopherol biosynthesis during water stress and leaf aging.
Phytochemistry | 2013
Laura Siles; Jana Cela; Sergi Munné-Bosch
Tocopherols are thought to prevent oxidative damage during seed quiescence and dormancy in all angiosperms. However, several monocot species accumulate tocotrienols in seeds and their role remains elusive. Here, we aimed to unravel the distribution of tocopherols and tocotrienols in seeds of the Arecaceae family, to examine possible trends of vitamin E accumulation within different clades of the same family. We examined the tocopherol and tocotrienol content in seeds of 84 species. Furthermore, we evaluated the vitamin E composition of the seed coat, endosperm and embryo of seeds from 6 species, to determine possible tissue-specific functions of particular vitamin E forms. While seeds of 98.8% (83 out of 84) of the species accumulated tocotrienols, only 58.3% (49 out of 84) accumulated tocopherols. The presence of tocopherols did not follow a clear evolutionary trend, and appeared randomly in some clades only. In addition, the tissue-specific location of vitamin E in seeds revealed that the embryo contains mostly α-tocopherol (in seed tocopherol-accumulating species) or α-tocotrienol (in seed tocopherol-deficient species). However, some species such as Socratea exorrhiza mostly accumulate β-tocotrienol, and Parajubaea torallyi accumulates a mixture of tocopherols and tocotrienols in the embryo. This suggests that tocotrienols can play a similar protective role to that exerted by tocopherols in seeds, at least in some species of the Arecaceae family. We conclude that tocotrienol, rather than tocopherol, accumulation is a conserved trait in seeds of the Arecaceae family.
Archive | 2012
Iker Hernández; Jana Cela; Leonor Alegre; Sergi Munné-Bosch
Plants possess a battery of structural, physiological, biochemical, and molecular mechanisms to withstand drought periods. During drought, stomatal limitation of photosynthesis, overreduction of the photosynthetic electron transport chain, enhanced photorespiration, and many other processes may result on enhanced formation of reactive oxygen species (ROS) and other oxidizing agents. One of the most important defense mechanisms against drought is the antioxidant system, which detoxifies prooxidants such as ROS and lipid peroxyl radicals, and keeps an adequate cellular redox balance. Antioxidants may be classified in enzymatic (e.g., ascorbate peroxidases, catalases, and superoxide dismutases) or nonenzymatic (syn. low molecular weight) antioxidants (e.g., ascorbate, glutathione, carotenoids, and tocopherols). Antioxidants may scavenge ROS directly or in co-operation with other antioxidants. This co-operation between antioxidants also allows re-cycling of oxidized antioxidants. Moreover, antioxidants are key sensors of the cellular redox status, so they trigger a number of signaling events intended to keep an adequate cellular redox balance. In this chapter, the function of the most important antioxidants in plants and the role of antioxidants in cellular redox homeostasis during drought stress will be reviewed.
Plant Signaling & Behavior | 2013
Hasna Ellouzi; Karim Ben Hamed; Jana Cela; Maren Müller; Chedly Abdelly; Sergi Munné-Bosch
Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance.
Journal of Experimental Botany | 2014
Maren Müller; Laura Siles; Jana Cela; Sergi Munné-Bosch
This study evaluated if plant ageing can influence the production and composition of seeds in controlled and natural populations of Cistus albidus. Results indicate that reduced plant size in natural populations can help old individuals escape senescence in terms of seed viability loss