Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jana Hartmann is active.

Publication


Featured researches published by Jana Hartmann.


Neuron | 2008

TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination

Jana Hartmann; Elena Dragicevic; Helmuth Adelsberger; Horst A. Henning; Martin Sumser; Joel Abramowitz; Robert Blum; Alexander Dietrich; Marc Freichel; Veit Flockerzi; Lutz Birnbaumer; Arthur Konnerth

In the mammalian central nervous system, slow synaptic excitation involves the activation of metabotropic glutamate receptors (mGluRs). It has been proposed that C1-type transient receptor potential (TRPC1) channels underlie this synaptic excitation, but our analysis of TRPC1-deficient mice does not support this hypothesis. Here, we show unambiguously that it is TRPC3 that is needed for mGluR-dependent synaptic signaling in mouse cerebellar Purkinje cells. TRPC3 is the most abundantly expressed TRPC subunit in Purkinje cells. In mutant mice lacking TRPC3, both slow synaptic potentials and mGluR-mediated inward currents are completely absent, while the synaptically mediated Ca2+ release signals from intracellular stores are unchanged. Importantly, TRPC3 knockout mice exhibit an impaired walking behavior. Taken together, our results establish TRPC3 as a new type of postsynaptic channel that mediates mGluR-dependent synaptic transmission in cerebellar Purkinje cells and is crucial for motor coordination.


Neuron | 2014

STIM1 Controls Neuronal Ca2+ Signaling, mGluR1-Dependent Synaptic Transmission, and Cerebellar Motor Behavior

Jana Hartmann; Rosa Maria Karl; Ryan P.D. Alexander; Helmuth Adelsberger; Monika S. Brill; Charlotta Rühlmann; Anna Ansel; Kenji Sakimura; Yoshihiro Baba; Tomohiro Kurosaki; Thomas Misgeld; Arthur Konnerth

In central mammalian neurons, activation of metabotropic glutamate receptor type1 (mGluR1) evokes a complex synaptic response consisting of IP3 receptor-dependent Ca(2+) release from internal Ca(2+) stores and a slow depolarizing potential involving TRPC3 channels. It is largely unclear how mGluR1 is linked to its downstream effectors. Here, we explored the role of stromal interaction molecule 1 (STIM1) in regulating neuronal Ca(2+) signaling and mGluR1-dependent synaptic transmission. By analyzing mouse cerebellar Purkinje neurons, we demonstrate that STIM1 is an essential regulator of the Ca(2+) level in neuronal endoplasmic reticulum Ca(2+) stores. Both mGluR1-dependent synaptic potentials and IP3 receptor-dependent Ca(2+) signals are strongly attenuated in the absence of STIM1. Furthermore, the Purkinje neuron-specific deletion of Stim1 causes impairments in cerebellar motor behavior. Together, our results demonstrate that in the mammalian nervous system STIM1 is a key regulator of intracellular Ca(2+) signaling, metabotropic glutamate receptor-dependent synaptic transmission, and motor coordination.


Nature Communications | 2014

An assay to image neuronal microtubule dynamics in mice

Tatjana Kleele; Petar Marinković; Philip R. Williams; Sina Stern; Emily Weigand; Peter Engerer; Ronald Naumann; Jana Hartmann; Rosa Maria Karl; Frank Bradke; Derron L. Bishop; Jochen Herms; Arthur Konnerth; Martin Kerschensteiner; Leanne Godinho; Thomas Misgeld

Microtubule dynamics in neurons play critical roles in physiology, injury and disease and determine microtubule orientation, the cell biological correlate of neurite polarization. Several microtubule binding proteins, including end-binding protein 3 (EB3), specifically bind to the growing plus tip of microtubules. In the past, fluorescently tagged end-binding proteins have revealed microtubule dynamics in vitro and in non-mammalian model organisms. Here, we devise an imaging assay based on transgenic mice expressing yellow fluorescent protein-tagged EB3 to study microtubules in intact mammalian neurites. Our approach allows measurement of microtubule dynamics in vivo and ex vivo in peripheral nervous system and central nervous system neurites under physiological conditions and after exposure to microtubule-modifying drugs. We find an increase in dynamic microtubules after injury and in neurodegenerative disease states, before axons show morphological indications of degeneration or regrowth. Thus increased microtubule dynamics might serve as a general indicator of neurite remodelling in health and disease.


The Journal of Neuroscience | 2008

Homosynaptic Long-Term Synaptic Potentiation of the “Winner” Climbing Fiber Synapse in Developing Purkinje Cells

Laurens W. J. Bosman; Hajime Takechi; Jana Hartmann; Jens Eilers; Arthur Konnerth

During the developmental formation of neuronal circuits, redundant synapses are eliminated and persisting synapses strengthened. In the immature cerebellum, climbing fiber–Purkinje cell synapses undergo a pronounced synaptic rewiring, from a multiple innervation around birth to a mono-innervation in adults. An early stage of this process consists in the differentiation of initially equally strong synapses into one “large” and several “small” synaptic inputs. By performing whole-cell recordings in Purkinje cells of rat cerebellar slices, we found that the coincident activation of a Purkinje cell and one of its afferent climbing fibers induces homosynaptic long-term synaptic potentiation (LTP). This LTP requires postsynaptic Ca2+ signaling and involves an increase in the single channel conductance of the postsynaptic AMPA receptors. Interestingly, LTP occurs exclusively at large synaptic inputs. It is not observed at small inputs that are eventually eliminated. Thus, we identified a new form of LTP that is expressed uniquely and just for a restricted period of early development in the large climbing fiber inputs. Our results suggest that this LTP mediates the activity-dependent maturation of the “winner” climbing fiber.


The Journal of Neuroscience | 2012

NMDA Receptor-Dependent Synaptic Activation of TRPC Channels in Olfactory Bulb Granule Cells

Stroh O; Marc Freichel; Oliver Kretz; Lutz Birnbaumer; Jana Hartmann; Egger

Canonical transient receptor potential (TRPC) channels are widely expressed throughout the nervous system including the olfactory bulb where their function is largely unknown. Here, we describe their contribution to central synaptic processing at the reciprocal mitral and tufted cell–granule cell microcircuit, the most abundant synapse of the mammalian olfactory bulb. Suprathreshold activation of the synapse causes sodium action potentials in mouse granule cells and a subsequent long-lasting depolarization (LLD) linked to a global dendritic postsynaptic calcium signal recorded with two-photon laser-scanning microscopy. These signals are not observed after action potentials evoked by current injection in the same cells. The LLD persists in the presence of group I metabotropic glutamate receptor antagonists but is entirely absent from granule cells deficient for the NMDA receptor subunit NR1. Moreover, both depolarization and Ca2+ rise are sensitive to the blockade of NMDA receptors. The LLD and the accompanying Ca2+ rise are also absent in granule cells from mice deficient for both TRPC channel subtypes 1 and 4, whereas the deletion of either TRPC1 or TRPC4 results in only a partial reduction of the LLD. Recordings from mitral cells in the absence of both subunits reveal a reduction of asynchronous neurotransmitter release from the granule cells during recurrent inhibition. We conclude that TRPC1 and TRPC4 can be activated downstream of NMDA receptor activation and contribute to slow synaptic transmission in the olfactory bulb, including the calcium dynamics required for asynchronous release from the granule cell spine.


The Journal of Neuroscience | 2013

Early Onset of Ataxia in Moonwalker Mice Is Accompanied by Complete Ablation of Type II Unipolar Brush Cells and Purkinje Cell Dysfunction

Gabriella Sekerková; Jin Ah Kim; Maximiliano José Nigro; Esther B. E. Becker; Jana Hartmann; Lutz Birnbaumer; Enrico Mugnaini; Marco Martina

Transient receptor potential “canonical” cation channels (TRPC) are involved in many cellular activities, including neuronal synaptic transmission. These channels couple lipid metabolism, calcium homeostasis, and electrophysiological properties as they are calcium permeable and activated through the phospholipase C pathway and by diacylglycerol. The TRPC3 subunit is abundantly expressed in Purkinje cells (PCs), where it mediates slow metabotropic glutamate receptor-mediated synaptic responses. Recently, it has been shown that heterozygous moonwalker mice, which are a model of cerebellar ataxia, carry a dominant gain-of-function mutation (T635A) in the TRPC3 gene. This mutation leads to PC loss and dysmorphism, which have been suggested to cause the ataxia. However, the ataxic phenotype is present from a very early stage (before weaning), whereas PC loss does not appear until several months of age. Here we show that another class of cerebellar neurons, the type II unipolar brush cells (UBCs), express functional TRPC3 channels; intriguingly, these cells are ablated in moonwalker mice by 1 month of age. Additionally, we show that in moonwalker mice, intrinsic excitability of PCs is altered as early as 3 weeks after birth. We suggest that this altered excitability and the TRPC3-mediated loss of type II UBCs may both contribute to the ataxic phenotype of these mice and that different calcium handling in PCs and type II UBCs may account for the dramatic differences in sensitivity to the moonwalker mutation between these cell types.


Cold Spring Harbor Perspectives in Biology | 2011

mGluR1/TRPC3-mediated Synaptic Transmission and Calcium Signaling in Mammalian Central Neurons

Jana Hartmann; Horst A. Henning; Arthur Konnerth

Metabotropic glutamate receptors type 1 (mGluR1s) are required for a normal function of the mammalian brain. They are particularly important for synaptic signaling and plasticity in the cerebellum. Unlike ionotropic glutamate receptors that mediate rapid synaptic transmission, mGluR1s produce in cerebellar Purkinje cells a complex postsynaptic response consisting of two distinct signal components, namely a local dendritic calcium signal and a slow excitatory postsynaptic potential. The basic mechanisms underlying these synaptic responses were clarified in recent years. First, the work of several groups established that the dendritic calcium signal results from IP(3) receptor-mediated calcium release from internal stores. Second, it was recently found that mGluR1-mediated slow excitatory postsynaptic potentials are mediated by the transient receptor potential channel TRPC3. This surprising finding established TRPC3 as a novel postsynaptic channel for glutamatergic synaptic transmission.


European Journal of Neuroscience | 2012

P/Q-type and T-type calcium channels, but not type 3 transient receptor potential cation channels, are involved in inhibition of dendritic growth after chronic metabotropic glutamate receptor type 1 and protein kinase C activation in cerebellar Purkinje cells

Olivia S. Gugger; Jana Hartmann; Lutz Birnbaumer; Josef P. Kapfhammer

The development of a neuronal dendritic tree is modulated both by signals from afferent fibers and by an intrinsic program. We have previously shown that chronic activation of either type 1 metabotropic glutamate receptors (mGluR1s) or protein kinase C (PKC) in organotypic cerebellar slice cultures of mice and rats severely inhibits the growth and development of the Purkinje cell dendritic tree. The signaling events linking receptor activation to the regulation of dendritic growth remain largely unknown. We have studied whether channels allowing the entry of Ca2+ into Purkinje cells, in particular the type 3 transient receptor potential cation channels (TRPC3s), P/Q‐type Ca2+ channels, and T‐type Ca2+ channels, might be involved in signaling after mGluR1 or PKC stimulation. We show that the inhibition of dendritic growth seen after mGluR1 or PKC stimulation is partially rescued by pharmacological blockade of P/Q‐type and T‐type Ca2+ channels, indicating that activation of these channels mediating Ca2+ influx contributes to the inhibition of dendritic growth. In contrast, the absence of Ca2+ ‐permeable TRPC3s in TRPC3‐deficient mice or pharmacological blockade had no effect on mGluR1‐mediated and PKC‐mediated inhibition of Purkinje cell dendritic growth. Similarly, blockade of Ca2+ influx through glutamate receptor δ2 or R‐type Ca2+ channels or inhibition of release from intracellular stores did not influence mGluR1‐mediated and PKC‐mediated inhibition of Purkinje cell dendritic growth. These findings suggest that both T‐type and P/Q‐type Ca2+ channels, but not TRPC3 or other Ca2+‐permeable channels, are involved in mGluR1 and PKC signaling leading to the inhibition of dendritic growth in cerebellar Purkinje cells.


Journal of Molecular Medicine | 2015

TRPC3‐dependent synaptic transmission in central mammalian neurons

Jana Hartmann; Arthur Konnerth

The transient receptor potential (TRPC) proteins form non-selective cation channels that are activated downstream of Gq-phospholipase C-coupled receptors. TRPC3, one of the seven members of the TRPC subfamily, combines functions of an unspecific ion channel and a signal transducer. In the mammalian brain, the expression of TRPC3 is highest in cerebellar Purkinje cells, the principal neurons, and the sole output of the cerebellar cortex. In this review, we summarize findings identifying TRPC3 channels as integral components of glutamatergic metabotropic synaptic transmission. We give an overview of postsynaptic interaction partners and activation mechanisms of TRPC3 in central neurons. Finally, we address the deleterious consequences of distorted TRPC3 synaptic signaling for cerebellar function in different mouse models and present TRPC3 as an emerging candidate protein implicated in various forms of ataxia in humans.


Diabetes | 2017

Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis

Claire Fenech; Fabienne Liénard; Sylvie Grall; Charlène Chevalier; Sylvie Chaudy; Xavier Brenachot; Raymond Berges; Katie Louche; Romana Stark; Emmanuelle Nédélec; Amélie Laderrière; Zane B. Andrews; Alexandre Benani; Veit Flockerzi; Jean Gascuel; Jana Hartmann; Cedric Moro; Lutz Birnbaumer; Corinne Leloup; Luc Pénicaud; Xavier Fioramonti

The mediobasal hypothalamus (MBH) contains neurons capable of directly detecting metabolic signals such as glucose to control energy homeostasis. Among them, glucose-excited (GE) neurons increase their electrical activity when glucose rises. In view of previous work, we hypothesized that transient receptor potential canonical type 3 (TRPC3) channels are involved in hypothalamic glucose detection and the control of energy homeostasis. To investigate the role of TRPC3, we used constitutive and conditional TRPC3-deficient mouse models. Hypothalamic glucose detection was studied in vivo by measuring food intake and insulin secretion in response to increased brain glucose level. The role of TRPC3 in GE neuron response to glucose was studied by using in vitro calcium imaging on freshly dissociated MBH neurons. We found that whole-body and MBH TRPC3-deficient mice have increased body weight and food intake. The anorectic effect of intracerebroventricular glucose and the insulin secretory response to intracarotid glucose injection are blunted in TRPC3-deficient mice. TRPC3 loss of function or pharmacological inhibition blunts calcium responses to glucose in MBH neurons in vitro. Together, the results demonstrate that TRPC3 channels are required for the response to glucose of MBH GE neurons and the central effect of glucose on insulin secretion and food intake.

Collaboration


Dive into the Jana Hartmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oliver Kretz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge