Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jana Humpolíčková is active.

Publication


Featured researches published by Jana Humpolíčková.


Journal of Fluorescence | 2005

Solvent Relaxation in Phospholipid Bilayers: Principles and Recent Applications

Piotr Jurkiewicz; Jan Sýkora; Agnieszka Ol . zyńska; Jana Humpolíčková; Martin Hof

Although there exist a number of methods, such as NMR, X-ray, e.g., which explore the hydration of phospholipid bilayers, the solvent relaxation (SR) method has the advantage of simple instrumentation, easy data treatment and possibility of measuring fully hydrated samples. The main information gained from SR by the analysis of recorded “time-resolved emission spectra” (TRES) is micro-viscosity and micro-polarity of the dye microenvironment. Based on these parameters, one can draw conclusions about water structure in the bilayer. In this review, we focus on physical background of this method, on all the procedures that are needed in order to obtain relevant parameters, and on the requirements on the fluorescence dyes. Furthermore, a few recent applications (the effect of curvature, binding of antibacterial peptides and phase transition) illustrating the versatility of this method are mentioned. Moreover, limitations and potential problems are discussed.


Physical Chemistry Chemical Physics | 2013

Molecular rheometry: Direct determination of viscosity in Lo and Ld lipid phases via fluorescence lifetime imaging

Yilei Wu; Martin Štefl; Agnieszka Olżyńska; Martin Hof; Gokhan Yahioglu; Philip Yip; Duncan Casey; Oscar Ces; Jana Humpolíčková; Marina K. Kuimova

Understanding of cellular regulatory pathways that involve lipid membranes requires the detailed knowledge of their physical state and structure. However, mapping the viscosity and diffusion in the membranes of complex composition is currently a non-trivial technical challenge. We report fluorescence lifetime spectroscopy and imaging (FLIM) of a meso-substituted BODIPY molecular rotor localised in the leaflet of model membranes of various lipid compositions. We prepare large and giant unilamellar vesicles (LUVs and GUVs) containing phosphatidylcholine (PC) lipids and demonstrate that recording the fluorescence lifetime of the rotor allows us to directly detect the viscosity of the membrane leaflet and to monitor the influence of cholesterol on membrane viscosity in binary and ternary lipid mixtures. In phase-separated 1,2-dioleoyl-sn-glycero-3-phosphocholine-cholesterol-sphingomyelin GUVs we visualise individual liquid ordered (Lo) and liquid disordered (Ld) domains using FLIM and assign specific microscopic viscosities to each domain. Our study showcases the power of FLIM with molecular rotors to image microviscosity of heterogeneous microenvironments in complex biological systems, including membrane-localised lipid rafts.


Biophysical Journal | 2012

Dynamics and Size of Cross-Linking-Induced Lipid Nanodomains in Model Membranes

Martin Štefl; Radek Šachl; Jana Humpolíčková; Marek Cebecauer; Radek Macháň; Marie Kolářová; Lennart B.-Å. Johansson; Martin Hof

Changes of membrane organization upon cross-linking of its components trigger cell signaling response to various exogenous factors. Cross-linking of raft gangliosides GM1 with cholera toxin (CTxB) was shown to cause microscopic phase separation in model membranes, and the CTxB-GM1 complexes forming a minimal lipid raft unit are the subject of ongoing cell membrane research. Yet, those subdiffraction sized rafts have never been described in terms of size and dynamics. By means of two-color z-scan fluorescence correlation spectroscopy, we show that the nanosized domains are formed in model membranes at lower sphingomyelin (Sph) content than needed for the large-scale phase separation and that the CTxB-GM1 complexes are confined in the domains poorly stabilized with Sph. Förster resonance energy transfer together with Monte Carlo modeling of the donor decay response reveal the domain radius of ~8 nm, which increases at higher Sph content. We observed two types of domains behaving differently, which suggests a dual role of the cross-linker: first, local transient condensation of the GM1 molecules compensating for a lack of Sph and second, coalescence of existing nanodomains ending in large-scale phase separation.


Small | 2012

Microscopic Origin of the Fast Blue‐Green Luminescence of Chemically Synthesized Non‐oxidized Silicon Quantum Dots

K. Dohnalová; Anna Fucikova; C.P. Umesh; Jana Humpolíčková; Jos M. J. Paulusse; Jan Valenta; Han Zuilhof; Martin Hof; T. Gregorkiewicz

The microscopic origin of the bright nanosecond blue-green photoluminescence (PL), frequently reported for synthesized organically terminated Si quantum dots (Si-QDs), has not been fully resolved, hampering potential applications of this interesting material. Here a comprehensive study of the PL from alkyl-terminated Si-QDs of 2-3 nm size, prepared by wet chemical synthesis is reported. Results obtained on the ensemble and those from the single nano-object level are compared, and they provide conclusive evidence that efficient and tunable emission arises due to radiative recombination of electron-hole pairs confined in the Si-QDs. This understanding paves the way towards applications of chemical synthesis for the development of Si-QDs with tunable sizes and bandgaps.


Molecular Biology of the Cell | 2013

The C-terminal domain of Brd2 is important for chromatin interaction and regulation of transcription and alternative splicing

Jarmila Hnilicová; Samira Hozeifi; Eva Stejskalová; Eva Dušková; Ina Poser; Jana Humpolíčková; Martin Hof; David Staněk

This study determines genes that are regulated by Brd2 and finds that, in addition to expression control, Brd2 modulates the alternative splicing of several hundred genes. The in vivo interaction of Brd2 with chromatin is analyzed, and the contributions of individual Brd2 domains to the chromatin interaction are determined.


Biochimica et Biophysica Acta | 2015

On multivalent receptor activity of GM1 in cholesterol containing membranes

Radek Šachl; Mariana Amaro; Gokcan Aydogan; Alena Koukalová; Ilya Mikhalyov; Ivan A. Boldyrev; Jana Humpolíčková; Martin Hof

Gangliosides located at the outer leaflet of plasma membrane are molecules that either participate in recognizing of exogenous ligand molecules or exhibit their own receptor activity, which are both essential phenomena for cell communication and signaling as well as for virus and toxin entry. Regulatory mechanisms of lipid-mediated recognition are primarily subjected to the physical status of the membrane in close vicinity of the receptor. Concerning the multivalent receptor activity of the ganglioside GM1, several regulatory strategies dealing with GM1 clustering and cholesterol involvement have been proposed. So far however, merely the isolated issues were addressed and no interplay between them investigated. In this work, several advanced fluorescence techniques such as Z-scan fluorescence correlation spectroscopy, Förster resonance energy transfer combined with Monte Carlo simulations, and a newly developed fluorescence antibunching assay were employed to give a more complex portrait of clustering and cholesterol involvement in multivalent ligand recognition of GM1. Our results indicate that membrane properties have an impact on a fraction of GM1 molecules that is not available for the ligand binding. While at low GM1 densities (~1 %) it is the cholesterol that turns GM1 headgroups invisible, at higher GM1 level (~4 %) it is purely the local density of GM1 molecules that inhibits the recognition. At medium GM1 content, cooperation of the two phenomena occurs. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling.


Physical Chemistry Chemical Physics | 2012

Effect of heavy water on phospholipid membranes: experimental confirmation of molecular dynamics simulations

Lenka Beranova; Jana Humpolíčková; Jan Sýkora; Aleš Benda; Lukasz Cwiklik; Piotr Jurkiewicz; Gerhard Gröbner; Martin Hof

Although there were experimental indications that phospholipid bilayers hydrated with D(2)O express different biophysical properties compared with hydration by ordinary H(2)O, a molecular concept for this behavior difference was only recently proposed by a molecular dynamics simulations study [T. Róg et al., J. Phys. Chem. B, 2009, 113, 2378-2387]. Here we attempt to verify those theoretical predictions by fluorescence measurements on 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. Specifically, we determine the water isotope effect on headgroup hydration and mobility, lateral lipid diffusion and lipid backbone packing. Time-dependent fluorescence shift experiments show significantly slower dynamics and lower hydration of the headgroup region for a bilayer hydrated with D(2)O, an observation in good agreement with the calculated predicted differences in duration of lipid-lipid and lipid-water bridges and extent of water penetration into the bilayer, respectively. The water isotope effect on the lipid order parameter of the bilayer core (measured by fluorescence anisotropy) and lateral diffusion of lipid molecules (determined by two-focus fluorescence correlation spectroscopy) is close to the experimental errors of the experiments, however also refers to slightly more rigid organization of phospholipid bilayers in heavy water. This study confirms the view that the water isotope effect can be particularly found in time-resolved physicochemical properties of the membrane. Together with the simulations our experiments provide a comprehensive, molecular view on the effect of D(2)O on phospholipid bilayers.


Biophysical Journal | 2009

Optical Saturation as a Versatile Tool to Enhance Resolution in Confocal Microscopy

Jana Humpolíčková; Aleš Benda; Jörg Enderlein

One of the most actively developing areas in fluorescence microscopy is the achievement of spatial resolution below Abbes diffraction limit, which restricts the resolution to several hundreds of nanometers. Most of the approaches in use at this time require a complex optical setup, a difficult mathematical treatment, or usage of dyes with special photophysical properties. In this work, we present a new, to our knowledge, approach in confocal microscopy that enhances the resolution moderately but is both technically and computationally simple. As it is based on the saturation of the transition from the ground state to the first excited state, it is universally applicable with respect to the dye used. The idea of the method presented is based on a principle similar to that underlying saturation excitation microscopy, but instead of applying harmonically modulated excitation light, the fluorophores are excited by picosecond laser pulses at different intensities, resulting in different levels of saturation. We show that the method can be easily combined with the concept of triplet relaxation, which by tuning the dark periods between pulses helps to suppress the formation of a photolabile triplet state and effectively reduces photobleaching. We demonstrate our approach imaging GFP-labeled protein patches within the plasma membrane of yeast cells.


Biochimica et Biophysica Acta | 2014

Comprehensive portrait of cholesterol containing oxidized membrane.

Martin Štefl; Radek Šachl; Agnieszka Olżyńska; Mariana Amaro; Dariya Savchenko; A. Deyneka; Albin Hermetter; Lukasz Cwiklik; Jana Humpolíčková; Martin Hof

Biological membranes are under significant oxidative stress caused by reactive oxygen species mostly originating during cellular respiration. Double bonds of the unsaturated lipids are most prone to oxidation, which might lead to shortening of the oxidized chain and inserting of terminal either aldehyde or carboxylic group. Structural rearrangement of oxidized lipids, addressed already, is mainly associated with looping back of the hydrophilic terminal group. This contribution utilizing dual-focus fluorescence correlation spectroscopy and electron paramagnetic resonance as well as atomistic molecular dynamics simulations focuses on the overall changes of the membrane structural and dynamical properties once it becomes oxidized. Particularly, attention is paid to cholesterol rearrangement in the oxidized membrane revealing its preferable interaction with carbonyls of the oxidized chains. In this view cholesterol seems to have a tendency to repair, rather than condense, the bilayer.


Biochimica et Biophysica Acta | 2015

Membrane activity of the pentaene macrolide didehydroroflamycoin in model lipid bilayers

Alena Koukalová; Sarka Pokorna; Radovan Fišer; Vladimír Kopecký; Jana Humpolíčková; Jan Černý; Martin Hof

Didehydroroflamycoin (DDHR), a recently isolated member of the polyene macrolide family, was shown to have antibacterial and antifungal activity. However, its mechanism of action has not been investigated. Antibiotics from this family are amphiphilic; thus, they have membrane activity, their biological action is localized in the membrane, and the membrane composition and physical properties facilitate the recognition of a particular compound by the target organism. In this work, we use model lipid membranes comprised of giant unilamellar vesicles (GUVs) for a systematic study of the action of DDHR. In parallel, experiments are conducted using filipin III and amphotericin B, other members of the family, and the behavior observed for DDHR is described in the context of that of these two heavily studied compounds. The study shows that DDHR disrupts membranes via two different mechanisms and that the involvement of these mechanisms depends on the presence of cholesterol. The leakage assays performed in GUVs and the conductance measurements using black lipid membranes (BLM) reveal that the pores that develop in the absence of cholesterol are transient and their size is dependent on the DDHR concentration. In contrast, cholesterol promotes the formation of more defined structures that are temporally stable.

Collaboration


Dive into the Jana Humpolíčková's collaboration.

Top Co-Authors

Avatar

Martin Hof

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Karel Procházka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Aleš Benda

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Radek Šachl

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Jan Sýkora

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Milena Špírková

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Miroslav Štěpánek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Pavel Matějíček

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Filip Uhlík

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Lenka Beranova

Academy of Sciences of the Czech Republic

View shared research outputs
Researchain Logo
Decentralizing Knowledge