Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jana L. Gevertz is active.

Publication


Featured researches published by Jana L. Gevertz.


Physical Biology | 2008

Simulating tumor growth in confined heterogeneous environments.

Jana L. Gevertz; George T. Gillies; S. Torquato

The holy grail of computational tumor modeling is to develop a simulation tool that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies. In order to develop such a predictive model, one must account for many of the complex processes involved in tumor growth. One interaction that has not been incorporated into computational models of neoplastic progression is the impact that organ-imposed physical confinement and heterogeneity have on tumor growth. For this reason, we have taken a cellular automaton algorithm that was originally designed to simulate spherically symmetric tumor growth and generalized the algorithm to incorporate the effects of tissue shape and structure. We show that models that do not account for organ/tissue geometry and topology lead to false conclusions about tumor spread, shape and size. The impact that confinement has on tumor growth is more pronounced when a neoplasm is growing close to, versus far from, the confining boundary. Thus, any clinical simulation tool of cancer progression must not only consider the shape and structure of the organ in which a tumor is growing, but must also consider the location of the tumor within the organ if it is to accurately predict neoplastic growth dynamics.


PLOS Computational Biology | 2008

A Novel Three-Phase Model of Brain Tissue Microstructure

Jana L. Gevertz; S. Torquato

We propose a novel biologically constrained three-phase model of the brain microstructure. Designing a realistic model is tantamount to a packing problem, and for this reason, a number of techniques from the theory of random heterogeneous materials can be brought to bear on this problem. Our analysis strongly suggests that previously developed two-phase models in which cells are packed in the extracellular space are insufficient representations of the brain microstructure. These models either do not preserve realistic geometric and topological features of brain tissue or preserve these properties while overestimating the brains effective diffusivity, an average measure of the underlying microstructure. In light of the highly connected nature of three-dimensional space, which limits the minimum diffusivity of biologically constrained two-phase models, we explore the previously proposed hypothesis that the extracellular matrix is an important factor that contributes to the diffusivity of brain tissue. Using accurate first-passage-time techniques, we support this hypothesis by showing that the incorporation of the extracellular matrix as the third phase of a biologically constrained model gives the reduction in the diffusion coefficient necessary for the three-phase model to be a valid representation of the brain microstructure.


Computational and Mathematical Methods in Medicine | 2011

Computational Modeling of Tumor Response to Vascular-Targeting Therapies—Part I: Validation

Jana L. Gevertz

Mathematical modeling techniques have been widely employed to understand how cancer grows, and, more recently, such approaches have been used to understand how cancer can be controlled. In this manuscript, a previously validated hybrid cellular automaton model of tumor growth in a vascularized environment is used to study the antitumor activity of several vascular-targeting compounds of known efficacy. In particular, this model is used to test the antitumor activity of a clinically used angiogenesis inhibitor (both in isolation, and with a cytotoxic chemotherapeutic) and a vascular disrupting agent currently undergoing clinical trial testing. I demonstrate that the mathematical model can make predictions in agreement with preclinical/clinical data and can also be used to gain more insight into these treatment protocols. The results presented herein suggest that vascular-targeting agents, as currently administered, cannot lead to cancer eradication, although a highly efficacious agent may lead to long-term cancer control.


Mathematical Biosciences and Engineering | 2015

Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections

Joanna R. Wares; Joseph J. Crivelli; Chae-Ok Yun; Il-Kyu Choi; Jana L. Gevertz; Peters S. Kim

Oncolytic viruses (OVs) are used to treat cancer, as they selectively replicate inside of and lyse tumor cells. The efficacy of this process is limited and new OVs are being designed to mediate tumor cell release of cytokines and co-stimulatory molecules, which attract cytotoxic T cells to target tumor cells, thus increasing the tumor-killing effects of OVs. To further promote treatment efficacy, OVs can be combined with other treatments, such as was done by Huang et al., who showed that combining OV injections with dendritic cell (DC) injections was a more effective treatment than either treatment alone. To further investigate this combination, we built a mathematical model consisting of a system of ordinary differential equations and fit the model to the hierarchical data provided from Huang et al. We used the model to determine the effect of varying doses of OV and DC injections and to test alternative treatment strategies. We found that the DC dose given in Huang et al. was near a bifurcation point and that a slightly larger dose could cause complete eradication of the tumor. Further, the model results suggest that it is more effective to treat a tumor with immunostimulatory oncolytic viruses first and then follow-up with a sequence of DCs than to alternate OV and DC injections. This protocol, which was not considered in the experiments of Huang et al., allows the infection to initially thrive before the immune response is enhanced. Taken together, our work shows how the ordering, temporal spacing, and dosage of OV and DC can be chosen to maximize efficacy and to potentially eliminate tumors altogether.


arXiv: Populations and Evolution | 2015

Emergence of Anti-Cancer Drug Resistance: Exploring the Importance of the Microenvironmental Niche via a Spatial Model

Jana L. Gevertz; Zahra Aminzare; Kerri-Ann Norton; Judith Pérez-Velázquez; Alexandria Volkening; Katarzyna A. Rejniak

Practically, all chemotherapeutic agents lead to drug resistance. Clinically, it is a challenge to determine whether resistance arises prior to, or as a result of, cancer therapy. Further, a number of different intracellular and microenvironmental factors have been correlated with the emergence of drug resistance. With the goal of better understanding drug resistance and its connection with the tumor microenvironment, we have developed a hybrid discrete-continuous mathematical model. In this model, cancer cells described through a particle-spring approach respond to dynamically changing oxygen and DNA damaging drug concentrations described through partial differential equations. We thoroughly explored the behavior of our self-calibrated model under the following common conditions: a fixed layout of the vasculature, an identical initial configuration of cancer cells, the same mechanism of drug action, and one mechanism of cellular response to the drug. We considered one set of simulations in which drug resistance existed prior to the start of treatment, and another set in which drug resistance is acquired in response to treatment. This allows us to compare how both kinds of resistance influence the spatial and temporal dynamics of the developing tumor, and its clonal diversity. We show that both pre-existing and acquired resistance can give rise to three biologically distinct parameter regimes: successful tumor eradication, reduced effectiveness of drug during the course of treatment (resistance), and complete treatment failure. When a drug resistant tumor population forms from cells that acquire resistance, we find that the spatial component of our model (the microenvironment) has a significant impact on the transient and long-term tumor behavior. On the other hand, when a resistant tumor population forms from pre-existing resistant cells, the microenvironment only has a minimal transient impact on treatment response. Finally, we present evidence that the microenvironmental niches of low drug/sufficient oxygen and low drug/low oxygen play an important role in tumor cell survival and tumor expansion. This may play role in designing new therapeutic agents or new drug combination schedules.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy

Syndi Barish; Michael F. Ochs; Eduardo D. Sontag; Jana L. Gevertz

Significance A successful cancer therapy induces a strong antitumor response while causing minimal side effects. The heterogeneous nature of cancer observed across different regions of the primary tumor, across metastatic sites, across time, and across patients makes designing such a successful therapy challenging. Both standard of care and finely tailored treatment protocols run the risk of not exhibiting a robust antitumor response in the face of these uncertainties. Here we introduce a platform for exploring this robustness question using treatment response data from a sample population. Our method integrates these experimental data with statistical and mathematical techniques, allowing us to quantify therapeutic robustness. Using this approach, we identified a robust therapeutic protocol that combines oncolytic viruses with an immunotherapeutic vaccine. Cancer is a highly heterogeneous disease, exhibiting spatial and temporal variations that pose challenges for designing robust therapies. Here, we propose the VEPART (Virtual Expansion of Populations for Analyzing Robustness of Therapies) technique as a platform that integrates experimental data, mathematical modeling, and statistical analyses for identifying robust optimal treatment protocols. VEPART begins with time course experimental data for a sample population, and a mathematical model fit to aggregate data from that sample population. Using nonparametric statistics, the sample population is amplified and used to create a large number of virtual populations. At the final step of VEPART, robustness is assessed by identifying and analyzing the optimal therapy (perhaps restricted to a set of clinically realizable protocols) across each virtual population. As proof of concept, we have applied the VEPART method to study the robustness of treatment response in a mouse model of melanoma subject to treatment with immunostimulatory oncolytic viruses and dendritic cell vaccines. Our analysis (i) showed that every scheduling variant of the experimentally used treatment protocol is fragile (nonrobust) and (ii) discovered an alternative region of dosing space (lower oncolytic virus dose, higher dendritic cell dose) for which a robust optimal protocol exists.


Mathematical Biosciences and Engineering | 2016

Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases.

Ami B. Shah; Katarzyna A. Rejniak; Jana L. Gevertz

While chemoresistance in primary tumors is well-studied, much less is known about the influence of systemic chemotherapy on the development of drug resistance at metastatic sites. In this work, we use a hybrid spatial model of tumor response to a DNA damaging drug to study how the development of chemoresistance in micrometastases depends on the drug dosing schedule. We separately consider cell populations that harbor pre-existing resistance to the drug, and those that acquire resistance during the course of treatment. For each of these independent scenarios, we consider one hypothetical cell line that is responsive to metronomic chemotherapy, and another that with high probability cannot be eradicated by a metronomic protocol. Motivated by experimental work on ovarian cancer xenografts, we consider all possible combinations of a one week treatment protocol, repeated for three weeks, and constrained by the total weekly drug dose. Simulations reveal a small number of fractionated-dose protocols that are at least as effective as metronomic therapy in eradicating micrometastases with acquired resistance (weak or strong), while also being at least as effective on those that harbor weakly pre-existing resistant cells. Given the responsiveness of very different theoretical cell lines to these few fractionated-dose protocols, these may represent more effective ways to schedule chemotherapy with the goal of limiting metastatic tumor progression.


Advances in Experimental Medicine and Biology | 2016

Microenvironmental Niches and Sanctuaries: A Route to Acquired Resistance

Judith Pérez-Velázquez; Jana L. Gevertz; Aleksandra Karolak; Katarzyna A. Rejniak

A tumor vasculature that is functionally abnormal results in irregular gradients of metabolites and drugs within the tumor tissue. Recently, significant efforts have been committed to experimentally examine how cellular response to anti-cancer treatments varies based on the environment in which the cells are grown. In vitro studies point to specific conditions in which tumor cells can remain dormant and survive the treatment. In vivo results suggest that cells can escape the effects of drug therapy in tissue regions that are poorly penetrated by the drugs. Better understanding how the tumor microenvironments influence the emergence of drug resistance in both primary and metastatic tumors may improve drug development and the design of more effective therapeutic protocols. This chapter presents a hybrid agent-based model of the growth of tumor micrometastases and explores how microenvironmental factors can contribute to the development of acquired resistance in response to a DNA damaging drug. The specific microenvironments of interest in this work are tumor hypoxic niches and tumor normoxic sanctuaries with poor drug penetration. We aim to quantify how spatial constraints of limited drug transport and quiescent cell survival contribute to the development of drug resistant tumors.


PRIMUS | 2015

Building Context with Tumor Growth Modeling Projects in Differential Equations

Julie C. Beier; Jana L. Gevertz; Keith E. Howard

Abstract The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss methods of preparing students for a research/writing experience, the critical thinking involved in completing the project, and the basic assessment of student work.


bioRxiv | 2017

A mathematical approach to differentiate spontaneous and induced evolution to drug resistance during cancer treatment

James M. Greene; Jana L. Gevertz; Eduardo D. Sontag

Drug resistance is a major impediment to the success of cancer treatment. Resistance is typically thought to arise through random genetic mutations, after which mutated cells expand via Darwinian selection. However, recent experimental evidence suggests that the progression to drug resistance need not occur randomly, but instead may be induced by the treatment itself, through either genetic changes or epigenetic alterations. This relatively novel notion of resistance complicates the already challenging task of designing effective treatment protocols. To better understand resistance, we have developed a mathematical modeling framework that incorporates both spontaneous and drug-induced resistance. Our model demonstrates that the ability of a drug to induce resistance can result in qualitatively different responses to the same drug dose and delivery schedule. We have also proven that the induction parameter in our model is theoretically identifiable, and proposed an in vitro protocol which could be used to determine a treatment’s propensity to induce resistance.

Collaboration


Dive into the Jana L. Gevertz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ami B. Shah

The College of New Jersey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge