Jana M. U'Ren
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jana M. U'Ren.
American Journal of Botany | 2012
Jana M. U'Ren; François Lutzoni; Jolanta Miadlikowska; Alexander D. Laetsch; A. Elizabeth Arnold
PREMISE OF THE STUDY Endophytic and endolichenic fungi occur in healthy tissues of plants and lichens, respectively, playing potentially important roles in the ecology and evolution of their hosts. However, previous sampling has not comprehensively evaluated the biotic, biogeographic, and abiotic factors that structure their communities. METHODS Using molecular data we examined the diversity, composition, and distributions of 4154 endophytic and endolichenic Ascomycota cultured from replicate surveys of ca. 20 plant and lichen species in each of five North American sites (Madrean coniferous forest, Arizona; montane semideciduous forest, North Carolina; scrub forest, Florida; Beringian tundra and forest, western Alaska; subalpine tundra, eastern central Alaska). KEY RESULTS Endolichenic fungi were more abundant and diverse per host species than endophytes, but communities of endophytes were more diverse overall, reflecting high diversity in mosses and lycophytes. Endophytes of vascular plants were largely distinct from fungal communities that inhabit mosses and lichens. Fungi from closely related hosts from different regions were similar in higher taxonomy, but differed at shallow taxonomic levels. These differences reflected climate factors more strongly than geographic distance alone. CONCLUSIONS Our study provides a first evaluation of endophytic and endolichenic fungal associations with their hosts at a continental scale. Both plants and lichens harbor abundant and diverse fungal communities whose incidence, diversity, and composition reflect the interplay of climatic patterns, geographic separation, host type, and host lineage. Although culture-free methods will inform future work, our study sets the stage for empirical assessments of ecological specificity, metabolic capability, and comparative genomics.
Fungal Biology | 2009
Jana M. U'Ren; James W. Dalling; Rachel E. Gallery; David R. Maddison; E. Christine Davis; Cara M. Gibson; A. Elizabeth Arnold
Fungi associated with seeds of tropical trees pervasively affect seed survival and germination, and thus are an important, but understudied, component of forest ecology. Here, we examine the diversity and evolutionary origins of fungi isolated from seeds of an important pioneer tree (Cecropia insignis, Cecropiaceae) following burial in soil for five months in a tropical moist forest in Panama. Our approach, which relied on molecular sequence data because most isolates did not sporulate in culture, provides an opportunity to evaluate several methods currently used to analyse environmental samples of fungi. First, intra- and interspecific divergence were estimated for the nu-rITS and 5.8S gene for four genera of Ascomycota that are commonly recovered from seeds. Using these values we estimated species boundaries for 527 isolates, showing that seed-associated fungi are highly diverse, horizontally transmitted, and genotypically congruent with some foliar endophytes from the same site. We then examined methods for inferring the taxonomic placement and phylogenetic relationships of these fungi, evaluating the effects of manual versus automated alignment, model selection, and inference methods, as well as the quality of BLAST-based identification using GenBank. We found that common methods such as neighbor-joining and Bayesian inference differ in their sensitivity to alignment methods; analyses of particular fungal genera differ in their sensitivity to alignments; and numerous and sometimes intricate disparities exist between BLAST-based versus phylogeny-based identification methods. Lastly, we used our most robust methods to infer phylogenetic relationships of seed-associated fungi in four focal genera, and reconstructed ancestral states to generate preliminary hypotheses regarding the evolutionary origins of this guild. Our results illustrate the dynamic evolutionary relationships among endophytic fungi, pathogens, and seed-associated fungi, and the apparent evolutionary distinctiveness of saprotrophs. Our study also elucidates the diversity, taxonomy, and ecology of an important group of plant-associated fungi and highlights some of the advantages and challenges inherent in the use of ITS data for environmental sampling of fungi.
Molecular Ecology Resources | 2014
Jana M. U'Ren; Jakob M. Riddle; James T. Monacell; Ignazio Carbone; Jolanta Miadlikowska; A. Elizabeth Arnold
Next‐generation sequencing technologies have provided unprecedented insights into fungal diversity and ecology. However, intrinsic biases and insufficient quality control in next‐generation methods can lead to difficult‐to‐detect errors in estimating fungal community richness, distributions and composition. The aim of this study was to examine how tissue storage prior to DNA extraction, primer design and various quality‐control approaches commonly used in 454 amplicon pyrosequencing might influence ecological inferences in studies of endophytic and endolichenic fungi. We first contrast 454 data sets generated contemporaneously from subsets of the same plant and lichen tissues that were stored in CTAB buffer, dried in silica gel or freshly frozen prior to DNA extraction. We show that storage in silica gel markedly limits the recovery of sequence data and yields a small fraction of the diversity observed by the other two methods. Using lichen mycobiont sequences as internal positive controls, we next show that despite careful filtering of raw reads and utilization of current best‐practice OTU clustering methods, homopolymer errors in sequences representing rare taxa artificially increased estimates of richness c. 15‐fold in a model data set. Third, we show that inferences regarding endolichenic diversity can be improved using a novel primer that reduces amplification of the mycobiont. Together, our results provide a rationale for selecting tissue treatment regimes prior to DNA extraction, demonstrate the efficacy of reducing mycobiont amplification in studies of the fungal microbiomes of lichen thalli and highlight the difficulties in differentiating true information about fungal biodiversity from methodological artefacts.
Journal of Natural Products | 2011
Xiao Ning Wang; Bharat P. Bashyal; E. M. Kithsiri Wijeratne; Jana M. U'Ren; Manping X. Liu; Malkanthi K. Gunatilaka; A. Elizabeth Arnold; A. A. Leslie Gunatilaka
Five new isopimarane diterpenes, smardaesidins A-E (1- 5) and two new 20-nor-isopimarane diterpenes, smardaesidins F (6) and G (7), together with sphaeropsidins A (8) and C-F (10-13) were isolated from an endophytic fungal strain, Smardaea sp. AZ0432, occurring in living photosynthetic tissue of the moss Ceratodon purpureus . Of these, smardaesidins B (2) and C (3) were obtained as an inseparable mixture of isomers. Chemical reduction of sphaeropsidin A (8) afforded sphaeropsidin B (9), whereas catalytic hydrogenation of 8 yielded 7-O-15,16-tetrahydrosphaeropsidin A (14) and its new derivative, 7-hydroxy-6-oxoisopimara-7-en-20-oic acid (15). The acetylation and diazomethane reaction of sphaeropsidin A (8) afforded two of its known derivatives, 6-O-acetylsphaeropsidin A (16) and 8,14-methylenesphaeropsidin A methyl ester (17), respectively. Methylation of 10 yielded sphaeropsidin C methyl ester (18). The planar structures and relative configurations of the new compounds 1-7 and 15 were elucidated using MS and 1D and 2D NMR experiments, while the absolute configurations of the stereocenters of 4 and 6-8 were assigned using a modified Moshers ester method, CD spectra, and comparison of specific rotation data with literature values. Compounds 1-18 were evaluated for their potential anticancer activity using several cancer cell lines and cells derived from normal human primary fibroblasts. Of these, compounds 8, 11, and 16 showed significant cytotoxic activity. More importantly, sphaeropsidin A (8) showed cell-type selectivity in the cytotoxicity assay and inhibited migration of metastatic breast adenocarcinoma (MDA-MB-231) cells at subcytotoxic concentrations.
Microbial Ecology | 2015
Nicholas C Massimo; M. M Nandi Devan; Kayla R. Arendt; Margaret H Wilch; Jakob M. Riddle; Susan H. Furr; Cole Steen; Jana M. U'Ren; Dustin C. Sandberg; A. Elizabeth Arnold
In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in aboveground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on nonsucculent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity, and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert-plant communities and can be used to optimize strategies for capturing endophyte biodiversity at regional scales.
Current Opinion in Microbiology | 2016
Bonnie L. Hurwitz; Jana M. U'Ren
Marine viruses often contain host-derived metabolic genes (i.e., auxiliary metabolic genes; AMGs), which are hypothesized to increase viral replication by augmenting key steps in host metabolism. Currently described AMGs encompass a wide variety of metabolic functions, including amino acid and carbohydrate metabolism, energy production, and iron-sulfur cluster assembly and modification, and their community-wide gene content and abundance vary as a function of environmental conditions. Here, we describe different AMGs classes, their hypothesized role in redirecting host carbon metabolism, and their ecological importance. Focusing on metagenomic ocean surveys, we propose a new model where a suite of phage-encoded genes activate host pathways that respond rapidly to environmental cues, presumably resulting in rapid changes to host metabolic flux for phage production.
Molecular Phylogenetics and Evolution | 2016
Jana M. U'Ren; Jolanta Miadlikowska; Naupaka Zimmerman; François Lutzoni; Jason E. Stajich; Anne Elizabeth Arnold
The Xylariaceae (Sordariomycetes) comprise one of the largest and most diverse families of Ascomycota, with at least 85 accepted genera and ca. 1343 accepted species. In addition to their frequent occurrence as saprotrophs, members of the family often are found as endophytes in living tissues of phylogenetically diverse plants and lichens. Many of these endophytes remain sterile in culture, precluding identification based on morphological characters. Previous studies indicate that endophytes are highly diverse and represent many xylariaceous genera; however, phylogenetic analyses at the family level generally have not included endophytes, such that their contributions to understanding phylogenetic relationships of Xylariaceae are not well known. Here we use a multi-locus, cumulative supermatrix approach to integrate 92 putative species of fungi isolated from plants and lichens into a phylogenetic framework for Xylariaceae. Our collection spans 1933 isolates from living and senescent tissues in five biomes across the continental United States, and here is analyzed in the context of previously published sequence data from described species and additional taxon sampling of type specimens from culture collections. We found that the majority of strains obtained in our surveys can be classified in the hypoxyloid and xylaroid subfamilies, although many also were found outside of these lineages (as currently circumscribed). Many endophytes were placed in lineages previously not known for endophytism. Most endophytes appear to represent novel species, but inferences are limited by potential gaps in public databases. By linking our data, publicly available sequence data, and records of ascomata, we identify many geographically widespread, host-generalist clades capable of symbiotic associations with diverse photosynthetic partners. Concomitant with such cosmopolitan host use and distributions, many xylariaceous endophytes appear to inhabit both living and non-living plant tissues, with potentially important roles as saprotrophs. Overall, our study reveals major gaps in the availability of multi-locus datasets and metadata for this iconic family, and provides new hypotheses regarding the ecology and evolution of endophytism and other trophic modes across the family Xylariaceae.
Fems Microbiology Letters | 2016
Bonnie L. Hurwitz; Jana M. U'Ren; Ken Youens-Clark
Bacteriophages play an important role in host-driven biological processes by controlling bacterial population size, horizontally transferring genes between hosts and expressing host-derived genes to alter host metabolism. Metagenomics provides the genetic basis for understanding the interplay between uncultured bacteria, their phage and the environment. In particular, viral metagenomes (viromes) are providing new insight into phage-encoded host genes (i.e. auxiliary metabolic genes; AMGs) that reprogram host metabolism during infection. Yet, despite deep sequencing efforts of viral communities, the majority of sequences have no match to known proteins. Reference-independent computational techniques, such as protein clustering, contig spectra and ecological profiling are overcoming these barriers to examine both the known and unknown components of viromes. As the field of viral metagenomics progresses, a critical assessment of tools is required as the majority of algorithms have been developed for analyzing bacteria. The aim of this paper is to offer an overview of current computational methodologies for virome analysis and to provide an example of reference-independent approaches using human skin viromes. Additionally, we present methods to carefully validate AMGs from host contamination. Despite computational challenges, these new methods offer novel insights into the diversity and functional roles of phages in diverse environments.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Carolina Sarmiento; Paul-Camilo Zalamea; James W. Dalling; Adam S. Davis; Stump M. Simon; Jana M. U'Ren; A. Elizabeth Arnold
Significance The remarkable diversity of trees in tropical forests is thought to be maintained by natural enemies such as fungal pathogens, which must exhibit sufficient host specificity to differentially impact survival of co-occurring host species. Little is known about the specificity of fungi that infect seeds of tropical trees. Here we show that communities of seed-associated fungi are structured more by plant species than by soil type, forest characteristics, or time in soil. These fungi have host-specific impacts on seed viability and germination. In this way, highly diverse communities of soilborne fungi directly impact a critical component of reproduction in tropical trees—seeds—with the potential to contribute to maintaining diversity in some of the richest terrestrial communities on Earth. The Janzen–Connell (JC) hypothesis provides a conceptual framework for explaining the maintenance of tree diversity in tropical forests. Its central tenet—that recruits experience high mortality near conspecifics and at high densities—assumes a degree of host specialization in interactions between plants and natural enemies. Studies confirming JC effects have focused primarily on spatial distributions of seedlings and saplings, leaving major knowledge gaps regarding the fate of seeds in soil and the specificity of the soilborne fungi that are their most important antagonists. Here we use a common garden experiment in a lowland tropical forest in Panama to show that communities of seed-infecting fungi are structured predominantly by plant species, with only minor influences of factors such as local soil type, forest characteristics, or time in soil (1–12 months). Inoculation experiments confirmed that fungi affected seed viability and germination in a host-specific manner and that effects on seed viability preceded seedling emergence. Seeds are critical components of reproduction for tropical trees, and the factors influencing their persistence, survival, and germination shape the populations of seedlings and saplings on which current perspectives regarding forest dynamics are based. Together these findings bring seed dynamics to light in the context of the JC hypothesis, implicating them directly in the processes that have emerged as critical for diversity maintenance in species-rich tropical forests.
Frontiers in Microbiology | 2017
Justin P. Shaffer; Jana M. U'Ren; Rachel E. Gallery; David A. Baltrus; A. Elizabeth Arnold
Bacterial endosymbionts occur in diverse fungi, including members of many lineages of Ascomycota that inhabit living plants. These endosymbiotic bacteria (endohyphal bacteria, EHB) often can be removed from living fungi by antibiotic treatment, providing an opportunity to assess their effects on functional traits of their fungal hosts. We examined the effects of an endohyphal bacterium (Chitinophaga sp., Bacteroidetes) on substrate use by its host, a seed-associated strain of the fungus Fusarium keratoplasticum, by comparing growth between naturally infected and cured fungal strains across 95 carbon sources with a Biolog® phenotypic microarray. Across the majority of substrates (62%), the strain harboring the bacterium significantly outperformed the cured strain as measured by respiration and hyphal density. These substrates included many that are important for plant- and seed-fungus interactions, such as D-trehalose, myo-inositol, and sucrose, highlighting the potential influence of EHB on the breadth and efficiency of substrate use by an important Fusarium species. Cases in which the cured strain outperformed the strain harboring the bacterium were observed in only 5% of substrates. We propose that additive or synergistic substrate use by the fungus-bacterium pair enhances fungal growth in this association. More generally, alteration of the breadth or efficiency of substrate use by dispensable EHB may change fungal niches in short timeframes, potentially shaping fungal ecology and the outcomes of fungal-host interactions.