Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jana Milucka is active.

Publication


Featured researches published by Jana Milucka.


Nature | 2012

Zero-valent sulphur is a key intermediate in marine methane oxidation

Jana Milucka; Timothy G. Ferdelman; Lubos Polerecky; Daniela Franzke; Gunter Wegener; Markus Schmid; Ingo Lieberwirth; Michael Wagner; Friedrich Widdel; Marcel M. M. Kuypers

Emissions of methane, a potent greenhouse gas, from marine sediments are controlled by anaerobic oxidation of methane coupled primarily to sulphate reduction (AOM). Sulphate-coupled AOM is believed to be mediated by a consortium of methanotrophic archaea (ANME) and sulphate-reducing Deltaproteobacteria but the underlying mechanism has not yet been resolved. Here we show that zero-valent sulphur compounds (S0) are formed during AOM through a new pathway for dissimilatory sulphate reduction performed by the methanotrophic archaea. Hence, AOM might not be an obligate syntrophic process but may be carried out by the ANME alone. Furthermore, we show that the produced S0—in the form of disulphide—is disproportionated by the Deltaproteobacteria associated with the ANME. Our observations expand the diversity of known microbially mediated sulphur transformations and have significant implications for our understanding of the biogeochemical carbon and sulphur cycles.


The ISME Journal | 2015

Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

Jana Milucka; Mathias Kirf; Lu Lu; Andreas Krupke; Phyllis Lam; Sten Littmann; Marcel M. M. Kuypers; Carsten J. Schubert

Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes.


PLOS ONE | 2015

Light-Dependent Aerobic Methane Oxidation Reduces Methane Emissions from Seasonally Stratified Lakes.

Kirsten Oswald; Jana Milucka; Andreas Brand; Sten Littmann; Bernhard Wehrli; Marcel M. M. Kuypers; Carsten J. Schubert

Lakes are a natural source of methane to the atmosphere and contribute significantly to total emissions compared to the oceans. Controls on methane emissions from lake surfaces, particularly biotic processes within anoxic hypolimnia, are only partially understood. Here we investigated biological methane oxidation in the water column of the seasonally stratified Lake Rotsee. A zone of methane oxidation extending from the oxic/anoxic interface into anoxic waters was identified by chemical profiling of oxygen, methane and δ13C of methane. Incubation experiments with 13C-methane yielded highest oxidation rates within the oxycline, and comparable rates were measured in anoxic waters. Despite predominantly anoxic conditions within the zone of methane oxidation, known groups of anaerobic methanotrophic archaea were conspicuously absent. Instead, aerobic gammaproteobacterial methanotrophs were identified as the active methane oxidizers. In addition, continuous oxidation and maximum rates always occurred under light conditions. These findings, along with the detection of chlorophyll a, suggest that aerobic methane oxidation is tightly coupled to light-dependent photosynthetic oxygen production both at the oxycline and in the anoxic bottom layer. It is likely that this interaction between oxygenic phototrophs and aerobic methanotrophs represents a widespread mechanism by which methane is oxidized in lake water, thus diminishing its release into the atmosphere.


Applied and Environmental Microbiology | 2014

Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp.

Jasmine S. Berg; Anne Schwedt; Anne-Christin Kreutzmann; Marcel M. M. Kuypers; Jana Milucka

ABSTRACT Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S0 under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (S n 2−). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that S n 2− species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS− as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S0 deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M.


Environmental Microbiology | 2011

Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane

Mirko Basen; Martin Krüger; Jana Milucka; Jan Kuever; Jörg Kahnt; Olav Grundmann; Anke Meyerdierks; Friedrich Widdel; Seigo Shima

Anaerobic oxidation of methane (AOM) with sulfate is catalysed by microbial consortia of archaea and bacteria affiliating with methanogens and sulfate-reducing Deltaproteobacteria respectively. There is evidence that methane oxidation is catalysed by enzymes related to those in methanogenesis, but the enzymes for sulfate reduction coupled to AOM have not been examined. We collected microbial mats with high AOM activity from a methane seep in the Black Sea. The mats consisted mainly of archaea of the ANME-2 group and bacteria of the Desulfosarcina-Desulfococcus group. Cell-free mat extract contained activities of enzymes involved in sulfate reduction to sulfide: ATP sulfurylase (adenylyl : sulfate transferase; Sat), APS reductase (Apr) and dissimilatory sulfite reductase (Dsr). We partially purified the enzymes by anion-exchange chromatography. The amounts obtained indicated that the enzymes are abundant in the mat, with Sat accounting for 2% of the soluble mat protein. N-terminal amino acid sequences of purified proteins suggested similarities to the corresponding enzymes of known species of sulfate-reducing bacteria. The deduced amino acid sequence of PCR-amplified genes of the Apr subunits is similar to that of Apr of the Desulfosarcina/Desulfococcus group. These results indicate that the major enzymes involved in sulfate reduction in the Back Sea microbial mats are of bacterial origin, most likely originating from the bacterial partner in the consortium.


The ISME Journal | 2017

Crenothrix are major methane consumers in stratified lakes

Kirsten Oswald; Jon S. Graf; Sten Littmann; Daniela Tienken; Andreas Brand; Bernhard Wehrli; Mads Albertsen; Holger Daims; Michael Wagner; Marcel M. M. Kuypers; Carsten J. Schubert; Jana Milucka

Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth’s natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an ‘unusual’ methane monooxygenase (MMO), which was only distantly related to ‘classical’ MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N2O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.


Nature | 2016

Environmental Breviatea harbour mutualistic Arcobacter epibionts

Emmo Hamann; Harald R. Gruber-Vodicka; Manuel Kleiner; Halina E. Tegetmeyer; Dietmar Riedel; Sten Littmann; Jianwei Chen; Jana Milucka; Bernhard Viehweger; Kevin W. Becker; Xiaoli Dong; Courtney W. Stairs; Kai-Uwe Hinrichs; Matthew W. Brown; Andrew J. Roger; Marc Strous

Summary Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi1–3. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle4. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments showed that the association of L. limosa with Arcobacter was driven by the transfer of hydrogen and was mutualistic, providing benefits to both partners. With whole genome sequencing and differential proteomics we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H accepting hydrogenase, which was expressed in the presence, but not in the absence of Arcobacter. Differential proteomics further revealed that the presence of Lenisia stimulated expression of known “virulence” factors by Arcobacter. These proteins typically enable colonization of animal cells during infection5, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic datasets of other Breviatea4 revealed the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism6 as shown here for Arcobacter and Breviatea.


Environmental Microbiology | 2013

Immunological detection of enzymes for sulfate reduction in anaerobic methane-oxidizing consortia

Jana Milucka; Friedrich Widdel; Seigo Shima

Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) at marine gas seeps is performed by archaeal-bacterial consortia that have so far not been cultivated in axenic binary or pure cultures. Knowledge about possible biochemical reactions in AOM consortia is based on metagenomic retrieval of genes related to those in archaeal methanogenesis and bacterial sulfate reduction, and identification of a few catabolic enzymes in protein extracts. Whereas the possible enzyme for methane activation (a variant of methyl-coenzyme M reductase, Mcr) was shown to be harboured by the archaea, enzymes for sulfate activation and reduction have not been localized so far. We adopted a novel approach of fluorescent immunolabelling on semi-thin (0.3-0.5 μm) cryosections to localize two enzymes of the SR pathway, adenylyl : sulfate transferase (Sat; ATP sulfurylase) and dissimilatory sulfite reductase (Dsr) in microbial consortia from Black Sea methane seeps. Both Sat and Dsr were exclusively found in an abundant microbial morphotype (c. 50% of all cells), which was tentatively identified as Desulfosarcina/Desulfococcus-related bacteria. These results show that ANME-2 archaea in the Black Sea AOM consortia did not express bacterial enzymes of the canonical sulfate reduction pathway and thus, in contrast to previous suggestions, most likely cannot perform canonical sulfate reduction. Moreover, our results show that fluorescent immunolabelling on semi-thin cryosections which to our knowledge has been so far only applied on cell tissues, is a powerful tool for intracellular protein detection in natural microbial associations.


Environmental Microbiology | 2016

Intensive cryptic microbial iron cycling in the low iron water column of the meromictic Lake Cadagno

Jasmine S. Berg; Dolma Michellod; Petra Pjevac; Clara Martínez-Pérez; Caroline R. T. Buckner; Philipp F. Hach; Carsten J. Schubert; Jana Milucka; Marcel M. M. Kuypers

Iron redox reactions play an important role in carbon remineralization, supporting large microbial communities in iron-rich terrestrial and aquatic sediments. Stratified water columns with comparably low iron concentrations are globally widespread, but microbial iron cycling in these systems has largely been ignored. We found evidence for unexpectedly high iron turnover rates in the low (1-2 µmol·l-1 ) iron waters of Lake Cadagno. Light-dependent, biological iron oxidation rates (1.4-13.8 µmol·l-1 ·d-1 ) were even higher than in ferruginous lakes with well-studied microbial iron cycles. This photoferrotrophic iron oxidation may account for up to 10% of total primary production in the chemocline. Iron oxides could not be detected and were presumably reduced immediately by iron-reducing microorganisms. Sequences of putative iron oxidizers and reducers were retrieved from in situ 16S rRNA gene amplicon libraries and some of these bacteria were identified in our enrichment cultures supplemented with Fe(II) and FeS. Based on our results, we propose a model in which iron is oxidized by photoferrotrophs and microaerophiles, and iron oxides are immediately reduced by heterotrophic iron reducers, resulting in a cryptic iron cycle. We hypothesize that microbial iron cycling may be more prevalent in water column redoxclines, especially those within the photic zone, than previously believed.


Environmental Microbiology | 2012

Vacuolar respiration of nitrate coupled to energy conservation in filamentous Beggiatoaceae

Martin Beutler; Jana Milucka; Susanne Hinck; Frank Schreiber; Jörg Brock; Marc Mußmann; Heide N. Schulz-Vogt; Dirk de Beer

We show that the nitrate storing vacuole of the sulfide-oxidizing bacterium Candidatus Allobeggiatoa halophila has an electron transport chain (ETC), which generates a proton motive force (PMF) used for cellular energy conservation. Immunostaining by antibodies showed that cytochrome c oxidase, an ETC protein and a vacuolar ATPase are present in the vacuolar membrane and cytochrome c in the vacuolar lumen. The effect of different inhibitors on the vacuolar pH was studied by pH imaging. Inhibition of vacuolar ATPases and pyrophosphatases resulted in a pH decrease in the vacuole, showing that the proton gradient over the vacuolar membrane is used for ATP and pyrophosphate generation. Blockage of the ETC decreased the vacuolar PMF, indicating that the proton gradient is build up by an ETC. Furthermore, addition of nitrate resulted in an increase of the vacuolar PMF. Inhibition of nitrate reduction, led to a decreased PMF. Nitric oxide was detected in vacuoles of cells exposed to nitrate showing that nitrite, the product of nitrate reduction, is reduced inside the vacuole. These findings show consistently that nitrate respiration contributes to the high proton concentration within the vacuole and the PMF over the vacuolar membrane is actively used for energy conservation.

Collaboration


Dive into the Jana Milucka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten J. Schubert

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Brand

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge