Jana Vachelová
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jana Vachelová.
International Journal of Radiation Oncology Biology Physics | 2016
Thomas I. Marshall; Pankaj Chaudhary; Anna Michaelidesová; Jana Vachelová; Marie Davídková; Vladimír Vondráček; Giuseppe Schettino; Kevin Prise
Purpose To investigate the clinical implications of a variable relative biological effectiveness (RBE) on proton dose fractionation. Using acute exposures, the current clinical adoption of a generic, constant cell killing RBE has been shown to underestimate the effect of the sharp increase in linear energy transfer (LET) in the distal regions of the spread-out Bragg peak (SOBP). However, experimental data for the impact of dose fractionation in such scenarios are still limited. Methods and Materials Human fibroblasts (AG01522) at 4 key depth positions on a clinical SOBP of maximum energy 219.65 MeV were subjected to various fractionation regimens with an interfraction period of 24 hours at Proton Therapy Center in Prague, Czech Republic. Cell killing RBE variations were measured using standard clonogenic assays and were further validated using Monte Carlo simulations and parameterized using a linear quadratic formalism. Results Significant variations in the cell killing RBE for fractionated exposures along the proton dose profile were observed. RBE increased sharply toward the distal position, corresponding to a reduction in cell sparing effectiveness of fractionated proton exposures at higher LET. The effect was more pronounced at smaller doses per fraction. Experimental survival fractions were adequately predicted using a linear quadratic formalism assuming full repair between fractions. Data were also used to validate a parameterized variable RBE model based on linear α parameter response with LET that showed considerable deviations from clinically predicted isoeffective fractionation regimens. Conclusions The RBE-weighted absorbed dose calculated using the clinically adopted generic RBE of 1.1 significantly underestimates the biological effective dose from variable RBE, particularly in fractionation regimens with low doses per fraction. Coupled with an increase in effective range in fractionated exposures, our study provides an RBE dataset that can be used by the modeling community for the optimization of fractionated proton therapy.
Applied Radiation and Isotopes | 2014
Martin Falk; Emilie Lukášová; Lenka Štefančíková; Elena Baranová; Iva Falková; Lucie Ježková; Marie Davídková; Alena Bačíková; Jana Vachelová; Anna Michaelidesová; Stanislav Kozubek
Cell differentiation is associated with extensive gene silencing, heterochromatinization and potentially decreasing need for repairing DNA double-strand breaks (DSBs). Differentiation stages of blood cells thus represent an excellent model to study DSB induction, repair and misrepair in the context of changing higher-order chromatin structure. We show that immature granulocytes form γH2AX and 53BP1 foci, contrary to the mature cells; however, these foci colocalize only rarely and DSB repair is inefficient. Moreover, specific chromatin structure of granulocytes probably influences DSB induction.
Applied Radiation and Isotopes | 2014
Lucie Ježková; Martin Falk; Iva Falková; Marie Davídková; Alena Bačíková; Lenka Štefančíková; Jana Vachelová; Anna Michaelidesová; Emilie Lukášová; Alla Boreyko; E.A. Krasavin; Stanislav Kozubek
According to their physical characteristics, protons and ion beams promise a revolution in cancer radiotherapy. Curing protocols however reflect rather the empirical knowledge than experimental data on DNA repair. This especially holds for the spatio-temporal organization of repair processes in the context of higher-order chromatin structure-the problematics addressed in this work. The consequences for the mechanism of chromosomal translocations are compared for gamma rays and proton beams.
Australasian Physical & Engineering Sciences in Medicine | 2017
Anna Michaelidesová; Jana Vachelová; Monika Puchalska; Kateřina Pachnerová Brabcová; Vladimír Vondráček; Lembit Sihver; Marie Davídková
In recent years, there is an increased interest in using scanning modes in proton therapy, due to the more conformal dose distributions, thanks to the spot-weighted dose delivery. The dose rate in each spot is however much higher than the dose rate when using passive irradiation modes, which could affect the cell response. The purpose of this work was to investigate how the relative biological effectiveness changes along the spread-out Bragg peak created by protons delivered by the pencil beam scanning mode. Cell survival and micronuclei formation were investigated in four positions along the spread-out Bragg peak for various doses. Monte Carlo simulations were used to estimate the dose-averaged linear energy transfer values in the irradiation positions. The cell survival was found to decrease the deeper the sample was placed in the spread-out Bragg peak, which corresponds to the higher linear energy transfer values found using Monte Carlo simulations. The micronuclei frequencies indicate more complex cell injuries at that distal position compared to the proximal part of the spread-out Bragg peak. The relative biological effectiveness determined in this study varies significantly and systematically from 1.1, which is recommended value by the International Commission on Radiation Units, in all the studied positions. In the distal position of spread-out Bragg peak the relative biological effectiveness values were found to be 2.05 ± 0.44, 1.85 ± 0.42, 1.53 ± 0.38 for survival levels 90, 50 and 10%, respectively.
Radiation Research | 2018
Matthias Port; Matthäus Majewski; F. Herodin; M. Valente; M. Drouet; F. Forcheron; Ales Tichy; Igor Sirak; A. Zavrelova; Andrea Malkova; B. V. Becker; D. A. Veit; S. Waldeck; Christophe Badie; G. O'Brien; H. Christiansen; J. Wichmann; M. Eder; G. Beutel; Jana Vachelová; S. Doucha-Senf; Michael Abend
The research for high-throughput diagnostic tests for victims of radio/nuclear incidents remains ongoing. In this context, we have previously identified candidate genes that predict risk of late-occurring hematologic acute radiation syndrome (HARS) in a baboon model. The goal of the current study was to validate these genes after radiation exposure in humans. We also examined ex vivo relative to in vivo measurements in both species and describe dose-response relationships. Eighteen baboons were irradiated in vivo to simulate different patterns of partial- or total-body irradiation (TBI), corresponding to an equivalent dose of 2.5 or 5 Sv. Human in vivo blood samples were obtained from patients exposed to different dose ranges: diagnostic computerized tomography (CT; 0.004–0.018 Sv); radiotherapy for prostate cancer (0.25–0.3 Sv); and TBI of leukemia patients (2 × 1.5 or 2 × 2 Sv, five patients each). Peripheral whole blood of another five baboons and human samples from five healthy donors were cultivated ex vivo and irradiated with 0–4 Sv. RNA was isolated pairwise before and 24 h after irradiation and converted into cDNA. Gene expression of six promising candidate genes found previously by us in a baboon model (WNT3, POU2AF1, CCR7, ARG2, CD177, WLS), as well as three genes commonly used in ex vivo whole blood experiments (FDXR, PCNA, DDB2) was measured using qRT-PCR. We confirmed the six baboon candidate genes in leukemia patients. However, expression for the candidate gene FDXR showed an inverse relationship, as it was downregulated in baboons and upregulated in human samples. Comparisons among the in vivo and ex vivo experiments revealed the same pattern in both species and indicated peripheral blood cells to represent the radiation-responsive targets causing WNT3 and POU2AF1 gene expression changes. CCR7, ARG2, CD177 and WLS appeared to be altered due to radiation-responsive targets other than the whole blood cells. Linear dose-response relationships of FDXR, WNT3 and POU2AF1 using human ex vivo samples corresponded with human in vivo samples, suggesting that ex vivo models for in vivo dose estimates can be used over a wide dose range (0.001–5 Sv for POU2AF1). In summary, we validated six baboon candidate genes in humans, but the FDXR measurements underscored the importance of independent assessments even when candidates from animal models have striking gene sequence homology to humans. Since whole blood cells represented the same radiation-responsive targets for FDXR, WNT3 and POU2AF1 gene expression changes, ex vivo cell culture models can be utilized for in vivo dose estimates over a dose range covering up to 3.5 log scales. These findings might be a step forward in the development of a gene expression-based high-throughput diagnostic test for populations involved in large-scale radio/nuclear incidents.
PLOS ONE | 2018
Ales Tichy; Sylwia Kabacik; Grainne O’Brien; Jaroslav Pejchal; Zuzana Šinkorová; Adela Kmochova; Igor Sirak; Andrea Malkova; Caterina Gomila Beltran; Juan R. González; Jakub Grepl; Matthaeus Majewski; Elizabeth A. Ainsbury; Lenka Zárybnická; Jana Vachelová; Alzbeta Zavrelova; Marie Davídková; Marketa Markova Stastna; Michael Abend; Eileen Pernot; Elisabeth Cardis; Christophe Badie
The increasing risk of acute large-scale radiological/nuclear exposures of population underlines the necessity of developing new, rapid and high throughput biodosimetric tools for estimation of received dose and initial triage. We aimed to compare the induction and persistence of different radiation exposure biomarkers in human peripheral blood in vivo. Blood samples of patients with indicated radiotherapy (RT) undergoing partial body irradiation (PBI) were obtained soon before the first treatment and then after 24 h, 48 h, and 5 weeks; i.e. after 1, 2, and 25 fractionated RT procedures. We collected circulating peripheral blood from ten patients with tumor of endometrium (1.8 Gy per fraction) and eight patients with tumor of head and neck (2.0–2.121 Gy per fraction). Incidence of dicentrics and micronuclei was monitored as well as determination of apoptosis and the transcription level of selected radiation-responsive genes. Since mitochondrial DNA (mtDNA) has been reported to be a potential indicator of radiation damage in vitro, we also assessed mtDNA content and deletions by novel multiplex quantitative PCR. Cytogenetic data confirmed linear dose-dependent increase in dicentrics (p < 0.01) and micronuclei (p < 0.001) in peripheral blood mononuclear cells after PBI. Significant up-regulations of five previously identified transcriptional biomarkers of radiation exposure (PHPT1, CCNG1, CDKN1A, GADD45, and SESN1) were also found (p < 0.01). No statistical change in mtDNA deletion levels was detected; however, our data indicate that the total mtDNA content decreased with increasing number of RT fractions. Interestingly, the number of micronuclei appears to correlate with late radiation toxicity (r2 = 0.9025) in endometrial patients suggesting the possibility of predicting the severity of RT-related toxicity by monitoring this parameter. Overall, these data represent, to our best knowledge, the first study providing a multiparametric comparison of radiation biomarkers in human blood in vivo, which have potential for improving biological dosimetry.
Journal of Radiation Research | 2014
Martin Falk; Emilie Lukášová; Iva Falková; Marie Davídková; Alena Bačíková; Lenka Štefančíková; Lucie Jezkova; Jana Vachelová; Anna Michaelidesová; Alla Boreyko; E.A. Krasavin; Stanislav Kozubek
Purpose: Ionizing radiations of different qualities (e.g. high-LET and low-LET) might differently interact with structurally and functionally distinct higher order chromatin domains (discussed in [ 1] and citations therein); this might be reflected by DNA double strand break (DSB) repair efficiency and the mechanism of how cancerogenous chromosomal translocations (CHT) form. Therefore, we compared the DSB repair kinetics and formation of γH2AX/p53BP1 repair clusters upon the action of γ-rays [ 2, 3], protons (15 and 30 MeV) [ 4], and 20Ne ions (preliminary data). Consequently, we discuss biological impacts of these clusters. Material and methods: Immunostaining methods in combination with high-resolution confocal microscopy, performed on 3D-fixed normal human skin fibroblasts [ 2– 4], were used to study initial distributions of γH2AX and p53BP1 repair foci and their changes during the post-irradiation (PI) time, with a special concern on foci clustering. Irradiations with γ-rays, protons of different energies (15 and 30 MeV), and high-LET 20Ne ions was performed in IBP ASCR Brno (CR), NPI AVCR Řež (CR) and JINR Dubna (Russia), respectively. Results: Upon irradiating cells with 20Ne ions, tracks of multiple clustered γH2AX and p53BP1 repair foci appeared immediately after the irradiation; these clusters, called here as the ‘primary clusters’, were rare in cells irradiated with γ-rays or protons (submitted). Though γH2AX/p53BP1 foci were positionally quite stable [ 2], ‘secondary clusters’ occasionally appeared after all kinds of irradiation during about 30 min PI. The formation of secondary clusters usually appeared due to the heterochromatin decondensation at the sites of heterochromatic DNA double-strand breaks (hcDSBs), followed by their protrusion into a limited space of nuclear subdomains of low density-chromatin (discussed in [ 1, 2, 5]). Conclusions: Primary clusters appear in cell nuclei immediately PI as the consequence of highly localized energy deposition, while secondary clusters develop during (and because of) DSB repair. Primary DSB clusters probably represent the main cause of chromosomal translocations induced with high-LET radiations while secondary clusters seem to be more important for low-LET γ-rays and protons. Secondary clusters of primary clusters (higher-order clusters) observed for 20Ne ions might explain frequent formation of complex translocations upon the action of high-LET radiations. Finally, we suggest [ 1, 2, 4] a model that describes the relationship between the higher order chromatin structure, DSB formation, repair and misrepair.
Critical Reviews in Eukaryotic Gene Expression | 2014
Martin Falk; Michael Hausmann; Emilie Lukášová; Biswas A; Hildenbrand G; Marie Davídková; E.A. Krasavin; Kleibl Z; Iva Falková; Ježková L; Lenka Štefančíková; Ševčík J; Hofer M; Alena Bačíková; Matula P; Alla Boreyko; Jana Vachelová; Anna Michaelidesová; Stanislav Kozubek
Radiation and Environmental Biophysics | 2015
Alexandra V. Litvinchuk; Jana Vachelová; Anna Michaelidesová; Richard Wagner; Marie Davídková
Diamond and Related Materials | 2016
Marie Krátká; Oleg Babchenko; Egor Ukraintsev; Jana Vachelová; Marie Davídková; Marta Vandrovcová; Alexander Kromka; Bohuslav Rezek