Janaina F Braga
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Janaina F Braga.
Circulation Research | 2013
Roberto Queiroga Lautner; Daniel C. Villela; R. A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline de Oliveira; Janaina F Braga; Silvia Quintao Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader
Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders. # Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Sérgio Henrique Sousa Santos; Janaina F Braga; Érica Guilhen Mario; Laura Cristina Jardim Porto; Maria da Glória Rodrigues-Machado; Antonela Murari; Leida Maria Botion; Natalia Alenina; Michael Bader; Robson A.S. Santos
Objective—Obesity and diabetes remain among the worlds most pervasive health problems. Although the importance of angiotensin II for metabolic regulation is well documented, the role of the angiotensin-(1-7)/Mas axis in this process is poorly understood. The aim of this study was to evaluate the effect of increased angiotensin-(1-7) plasma levels in lipid and glucose metabolism using transgenic rats that express an angiotensin-(1-7)-releasing fusion protein, TGR(A1-7)3292 (TGR). Methods and Results—The increased angiotensin-(1-7) levels in TGR induced enhanced glucose tolerance, insulin sensitivity, and insulin-stimulated glucose uptake. In addition, TGR presented decreased triglycerides and cholesterol levels, as well as a significant decrease in abdominal fat mass, despite normal food intake. These alterations were accompanied by a marked decrease of angiotensinogen expression and increased Akt in adipose tissue. Furthermore, augmented plasma levels and expression in adipose tissue was observed for adiponectin. Accordingly, angiotensin-(1-7) stimulation increased adiponectin production by primary adipocyte culture, which was blocked by the Mas antagonist A779. Circulating insulin and muscle glycogen content were not altered in TGR. Conclusion—These results show that increased circulating angiotensin-(1-7) levels lead to prominent changes in glucose and lipid metabolism.
Hypertension | 2014
Priscila S. Guimaraes; Mariana Flávia de Oliveira; Janaina F Braga; Ana Paula Nadu; Ann M. Schreihofer; Robson A.S. Santos; Maria José Campagnole-Santos
We evaluated effects of chronic intracerebroventricular infusion of angiotensin (Ang)-(1–7) on cardiovascular and metabolic parameters in fructose-fed (FF) rats. After 6 weeks of fructose intake (10% in drinking water), Sprague-Dawley rats were subjected to intracerebroventricular infusion of Ang-(1–7) (200 ng/h; FF+A7 group) or 0.9% sterile saline (FF group) for 4 weeks with continued access to fructose. Compared with control rats, FF rats had increased mean arterial pressure and cardiac sympathetic tone with impaired baroreflex sensitivity. FF rats also presented increased circulating triglycerides, leptin, insulin, and glucose with impaired glucose tolerance. Furthermore, relative weights of liver and retroperitoneal adipose tissue were increased in FF rats. Glycogen content was reduced in liver, but increased in muscle. In contrast, fructose-fed rats subjected to chronic intracerebroventricular infusion of Ang-(1–7) presented reduced cardiac sympathetic tone with normalized mean arterial pressure, baroreflex sensitivity, glucose and insulin levels, and improved glucose tolerance. Relative weight of liver, and hepatic and muscle glycogen contents were also normalized in FF+A7 rats. In addition, FF+A7 rats had reduced mRNA expression for neuronal nitric oxide synthase and NR1 subunit of N-methyl-D-aspartate receptor in hypothalamus and dorsomedial medulla. Ang-(1–7) infusion did not alter fructose-induced hyperleptinemia and increased relative weight of retroperitoneal adipose tissue. There were no differences in body weights, neither in liver mRNA expression of phosphoenolpyruvate carboxykinase or glucose-6-phosphatase among the groups. These data indicate that chronic increase in Ang-(1–7) levels in the brain may have a beneficial role in fructose-fed rats by ameliorating cardiovascular and metabolic disorders.
American Journal of Hypertension | 2015
E.P. Velloso; Renata Lúcia Pimentel; Janaina F Braga; Antônio Carlos Vieira Cabral; Zilma Silveira Nogueira Reis; Michael Bader; Robson A.S. Santos; Gerd Wallukat
BACKGROUND Recent studies have shown that preeclampsia (PE) is associated with the presence of autoantibodies (AABs) that activate the angiotensin II AT1 receptor, which could contribute to many of the symptoms of PE. METHODS To investigate the frequency and the targets of AABs in preeclamptic women (31 cases) and healthy pregnant normotensive women (29 cases) in Brazil, antibodies from serum samples were detected by a bioassay using spontaneously beating neonatal rat cardiomyocytes in culture. In the cardiomyocytes, the agonistic AABs induce a positive or negative chronotropic response, mimicking the corresponding receptor agonists. The specificity of the AAB response was identified by specific receptor antagonists. RESULTS Thirty preeclamptic patients (97%) presented AABs against the angiotensin II AT1 receptor. The agonistic effect of the AAB was blocked by irbesartan and neutralized by a peptide corresponding to the second extracellular loop of this receptor. Strikingly, we discovered that all sera from the severe preeclamptic patients (16 cases) contained a novel agonist-like AAB directed against the endothelin-1 ETA receptor in addition to the AABs against the angiotensin II AT1 receptor. This AAB was selectively blocked by the antagonist BQ-123, antagonized by the protein kinase C (PKC) inhibitor Calphostin C and neutralized by peptides corresponding to the second extracellular loop of the endothelin-1 ETA receptor subtype. CONCLUSIONS We described, for the first time, the presence of endothelin-1 ETA receptor AABs in PE. Our results suggest that the presence of both agonistic AABs may be involved in the pathogenesis of severe PE.
PLOS ONE | 2017
Valeria Burghi; Natalia Fernández; Yamila Belén Gándola; Veronica Piazza; Diego Tomás Quiroga; Érica Guilhen Mario; Janaina F Braga; Michael Bader; Robson A.S. Santos; Fernando P. Dominici; Marina C. Muñoz
Mas receptor (MasR) is a G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang (1–7) protective axis of renin–angiotensin system. Because the role of this receptor is not definitively clarified, determination of MasR tissue distribution and expression levels constitutes a critical knowledge to fully understanding its function. Commercially available antibodies have been widely employed for MasR protein localization and quantification, but they have not been adequately validated. In this study, we carried on an exhaustive evaluation of four commercial MasR antibodies, following previously established criteria. Western Blotting (WB) and immunohistochemistry studies starting from hearts and kidneys from wild type (WT) mice revealed that antibodies raised against different MasR domains yielded different patterns of reactivity. Furthermore, staining patterns appeared identical in samples from MasR knockout (MasR-KO) mice. We verified by polymerase chain reaction analysis that the MasR-KO mice used were truly deficient in this receptor as MAS transcripts were undetectable in either heart or kidney from this animal model. In addition, we evaluated the ability of the antibodies to detect the human c-myc-tagged MasR overexpressed in human embryonic kidney cells. Three antibodies were capable of detecting the MasR either by WB or by immunofluorescence, reproducing the patterns obtained with an anti c-myc antibody. In conclusion, although three of the selected antibodies were able to detect MasR protein at high expression levels observed in a transfected cell line, they failed to detect this receptor in mice tissues at physiological expression levels. As a consequence, validated antibodies that can recognize and detect the MasR at physiological levels are still lacking.
Circulation Research | 2013
Roberto Queiroga Lautner; Daniel C. Villela; Rodrigo A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline A. Oliveira; Janaina F Braga; Silvia Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader
Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders. # Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.
Endocrine connections | 2017
Janaina F Braga; Daniela Ravizzoni Dartora; Natalia Alenina; Michael Bader; Robson A.S. Santos
It has been shown that angiotensin(1–7) (Ang(1–7)) produces several effects related to glucose homeostasis. In this study, we aimed to investigate the effects of genetic deletion of Ang(1–7), the GPCR Mas, on the glucagon-producing cells. C57BL6/N Mas−/− mice presented a significant and marked increase in pancreatic α-cells (number of cells: 146 ± 21 vs 67 ± 8 in WT; P < 0.001) and the percentage per islet (17.9 ± 0.91 vs 12.3 ± 0.9% in WT; P < 0.0001) with subsequent reduction of β-cells percentage (82.1 ± 0.91 vs 87.7 ± 0.9% in WT; P < 0.0001). Accordingly, glucagon plasma levels were increased (516.7 ± 36.35 vs 390.8 ± 56.45 pg/mL in WT; P < 0.05) and insulin plasma levels were decreased in C57BL6/N Mas−/− mice (0.25 ± 0.01 vs 0.31 ± 56.45 pg/mL in WT; P = 0.02). In order to eliminate the possibility of a background-related phenotype, we determined the number of glucagon-producing cells in FVB/N Mas−/− mice. In keeping with the observations in C57BL6/N Mas−/− mice, the number and percentage of pancreatic α-cells were also significantly increased in these mice (number of α-cells: 260 ± 22 vs 156 ± 12 in WT, P < 0.001; percentage per islet: 16 ± 0.8 vs 10 ± 0.5% in WT, P < 0.0001). These results suggest that Mas has a previously unexpected role on the pancreatic glucagon production.
Circulation Research | 2013
Roberto Queiroga Lautner; Daniel C. Villela; Rodrigo A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline A. Oliveira; Janaina F Braga; Silvia Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader
Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders. # Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.
Circulation Research | 2013
Roberto Queiroga Lautner; Daniel C. Villela; Rodrigo A. Fraga-Silva; Neiva Silva; Thiago Verano-Braga; Fabiana P. Costa-Fraga; Joachim Jankowski; Vera Jankowski; Frederico B. De Sousa; Andréia Carvalho Alzamora; Everton Soares; Claudiane Barbosa; Frank Kjeldsen; Aline A. Oliveira; Janaina F Braga; Silvia Savergnini; Gisele Maia; Antonio Bastos Peluso; Danielle Passos-Silva; Anderson J. Ferreira; Fabiana Alves; Almir S. Martins; Mohan K. Raizada; Renata Cristina de Paula; Daisy Motta-Santos; Friederike Kemplin; Adriano M.C. Pimenta; Natalia Alenina; Rubén D. Sinisterra; Michael Bader
Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand β-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/β-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders. # Novelty and Significance {#article-title-32}Rationale: The renin–angiotensin system (RAS) is a key regulator of the cardiovascular system, electrolyte, and water balance. Here, we report identification and characterization of alamandine, a new heptapeptide generated by catalytic action of angiotensin-converting enzyme-2 angiotensin A or directly from angiotensin-(1–7). Objective: To characterize a novel component of the RAS, alamandine. Methods and Results: Using mass spectrometry we observed that alamandine circulates in human blood and can be formed from angiotensin-(1–7) in the heart. Alamandine produces several physiological actions that resemble those produced by angiotensin-(1–7), including vasodilation, antifibrosis, antihypertensive, and central effects. Interestingly, our data reveal that its actions are independent of the known vasodilator receptors of the RAS, Mas, and angiotensin II type 2 receptor. Rather, we demonstrate that alamandine acts through the Mas-related G-protein–coupled receptor, member D. Binding of alamandine to Mas-related G-protein–coupled receptor, member D is blocked by D-Pro7-angiotensin-(1–7), the Mas-related G-protein–coupled receptor, member D ligand &bgr;-alanine and PD123319, but not by the Mas antagonist A-779. In addition, oral administration of an inclusion compound of alamandine/&bgr;-hydroxypropyl cyclodextrin produced a long-term antihypertensive effect in spontaneously hypertensive rats and antifibrotic effects in isoproterenol-treated rats. Alamandine had no noticeable proliferative or antiproliferative effect in human tumoral cell lines. Conclusions: The identification of these 2 novel components of the RAS, alamandine and its receptor, provides new insights for the understanding of the physiological and pathophysiological role of the RAS and may help to develop new therapeutic strategies for treating human cardiovascular diseases and other related disorders.
Journal of Molecular Medicine | 2014
Sérgio Henrique Sousa Santos; Jorge F. Giani; Valeria Burghi; Johanna G. Miquet; Fatimunnisa Qadri; Janaina F Braga; Mihail Todiras; Katarina Kotnik; Natalia Alenina; Fernando P. Dominici; Robson A.S. Santos; Michael Bader