Jane Armitage
Clinical Trial Service Unit
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane Armitage.
The Lancet | 2011
Colin Baigent; Martin J. Landray; Christina Reith; Jonathan Emberson; David C. Wheeler; Charles Tomson; Christoph Wanner; Vera Krane; Alan Cass; Jonathan C. Craig; Bruce Neal; Lixin Jiang; Lai Seong Hooi; Adeera Levin; Lawrence Y. Agodoa; Mike Gaziano; Bertram L. Kasiske; Robert J. Walker; Ziad A. Massy; Bo Feldt-Rasmussen; Udom Krairittichai; Vuddidhej Ophascharoensuk; Bengt Fellström; Hallvard Holdaas; Vladimir Tesar; Andrzej Więcek; Diederick E. Grobbee; Dick de Zeeuw; Carola Grönhagen-Riska; Tanaji Dasgupta
Summary Background Lowering LDL cholesterol with statin regimens reduces the risk of myocardial infarction, ischaemic stroke, and the need for coronary revascularisation in people without kidney disease, but its effects in people with moderate-to-severe kidney disease are uncertain. The SHARP trial aimed to assess the efficacy and safety of the combination of simvastatin plus ezetimibe in such patients. Methods This randomised double-blind trial included 9270 patients with chronic kidney disease (3023 on dialysis and 6247 not) with no known history of myocardial infarction or coronary revascularisation. Patients were randomly assigned to simvastatin 20 mg plus ezetimibe 10 mg daily versus matching placebo. The key prespecified outcome was first major atherosclerotic event (non-fatal myocardial infarction or coronary death, non-haemorrhagic stroke, or any arterial revascularisation procedure). All analyses were by intention to treat. This trial is registered at ClinicalTrials.gov, NCT00125593, and ISRCTN54137607. Findings 4650 patients were assigned to receive simvastatin plus ezetimibe and 4620 to placebo. Allocation to simvastatin plus ezetimibe yielded an average LDL cholesterol difference of 0·85 mmol/L (SE 0·02; with about two-thirds compliance) during a median follow-up of 4·9 years and produced a 17% proportional reduction in major atherosclerotic events (526 [11·3%] simvastatin plus ezetimibe vs 619 [13·4%] placebo; rate ratio [RR] 0·83, 95% CI 0·74–0·94; log-rank p=0·0021). Non-significantly fewer patients allocated to simvastatin plus ezetimibe had a non-fatal myocardial infarction or died from coronary heart disease (213 [4·6%] vs 230 [5·0%]; RR 0·92, 95% CI 0·76–1·11; p=0·37) and there were significant reductions in non-haemorrhagic stroke (131 [2·8%] vs 174 [3·8%]; RR 0·75, 95% CI 0·60–0·94; p=0·01) and arterial revascularisation procedures (284 [6·1%] vs 352 [7·6%]; RR 0·79, 95% CI 0·68–0·93; p=0·0036). After weighting for subgroup-specific reductions in LDL cholesterol, there was no good evidence that the proportional effects on major atherosclerotic events differed from the summary rate ratio in any subgroup examined, and, in particular, they were similar in patients on dialysis and those who were not. The excess risk of myopathy was only two per 10 000 patients per year of treatment with this combination (9 [0·2%] vs 5 [0·1%]). There was no evidence of excess risks of hepatitis (21 [0·5%] vs 18 [0·4%]), gallstones (106 [2·3%] vs 106 [2·3%]), or cancer (438 [9·4%] vs 439 [9·5%], p=0·89) and there was no significant excess of death from any non-vascular cause (668 [14·4%] vs 612 [13·2%], p=0·13). Interpretation Reduction of LDL cholesterol with simvastatin 20 mg plus ezetimibe 10 mg daily safely reduced the incidence of major atherosclerotic events in a wide range of patients with advanced chronic kidney disease. Funding Merck/Schering-Plough Pharmaceuticals; Australian National Health and Medical Research Council; British Heart Foundation; UK Medical Research Council.
The New England Journal of Medicine | 2008
Emma Link; Sarah Parish; Jane Armitage; Louise Bowman; S Heath; Fumihiko Matsuda; I Gut; M Lathrop; R Collins
BACKGROUND Lowering low-density lipoprotein cholesterol with statin therapy results in substantial reductions in cardiovascular events, and larger reductions in cholesterol may produce larger benefits. In rare cases, myopathy occurs in association with statin therapy, especially when the statins are administered at higher doses and with certain other medications. METHODS We carried out a genomewide association study using approximately 300,000 markers (and additional fine-mapping) in 85 subjects with definite or incipient myopathy and 90 controls, all of whom were taking 80 mg of simvastatin daily as part of a trial involving 12,000 participants. Replication was tested in a trial of 40 mg of simvastatin daily involving 20,000 participants. RESULTS The genomewide scan yielded a single strong association of myopathy with the rs4363657 single-nucleotide polymorphism (SNP) located within SLCO1B1 on chromosome 12 (P=4x10(-9)). SLCO1B1 encodes the organic anion-transporting polypeptide OATP1B1, which has been shown to regulate the hepatic uptake of statins. The noncoding rs4363657 SNP was in nearly complete linkage disequilibrium with the nonsynonymous rs4149056 SNP (r(2)=0.97), which has been linked to statin metabolism. The prevalence of the rs4149056 C allele in the population was 15%. The odds ratio for myopathy was 4.5 (95% confidence interval [CI], 2.6 to 7.7) per copy of the C allele, and 16.9 (95% CI, 4.7 to 61.1) in CC as compared with TT homozygotes. More than 60% of these myopathy cases could be attributed to the C variant. The association of rs4149056 with myopathy was replicated in the trial of 40 mg of simvastatin daily, which also showed an association between rs4149056 and the cholesterol-lowering effects of simvastatin. No SNPs in any other region were clearly associated with myopathy. CONCLUSIONS We have identified common variants in SLCO1B1 that are strongly associated with an increased risk of statin-induced myopathy. Genotyping these variants may help to achieve the benefits of statin therapy more safely and effectively. (Current Controlled Trials number, ISRCTN74348595.)
The Lancet | 2008
P M Kearney; L Blackwell; R Collins; Anthony Keech; John Simes; Richard Peto; Jane Armitage; Colin Baigent
BACKGROUND Although statin therapy reduces the risk of occlusive vascular events in people with diabetes mellitus, there is uncertainty about the effects on particular outcomes and whether such effects depend on the type of diabetes, lipid profile, or other factors. We undertook a prospective meta-analysis to help resolve these uncertainties. METHODS We analysed data from 18 686 individuals with diabetes (1466 with type 1 and 17,220 with type 2) in the context of a further 71,370 without diabetes in 14 randomised trials of statin therapy. Weighted estimates were obtained of effects on clinical outcomes per 1.0 mmol/L reduction in LDL cholesterol. FINDINGS During a mean follow-up of 4.3 years, there were 3247 major vascular events in people with diabetes. There was a 9% proportional reduction in all-cause mortality per mmol/L reduction in LDL cholesterol in participants with diabetes (rate ratio [RR] 0.91, 99% CI 0.82-1.01; p=0.02), which was similar to the 13% reduction in those without diabetes (0.87, 0.82-0.92; p<0.0001). This finding reflected a significant reduction in vascular mortality (0.87, 0.76-1.00; p=0.008) and no effect on non-vascular mortality (0.97, 0.82-1.16; p=0.7) in participants with diabetes. There was a significant 21% proportional reduction in major vascular events per mmol/L reduction in LDL cholesterol in people with diabetes (0.79, 0.72-0.86; p<0.0001), which was similar to the effect observed in those without diabetes (0.79, 0.76-0.82; p<0.0001). In diabetic participants there were reductions in myocardial infarction or coronary death (0.78, 0.69-0.87; p<0.0001), coronary revascularisation (0.75, 0.64-0.88; p<0.0001), and stroke (0.79, 0.67-0.93; p=0.0002). Among people with diabetes the proportional effects of statin therapy were similar irrespective of whether there was a prior history of vascular disease and irrespective of other baseline characteristics. After 5 years, 42 (95% CI 30-55) fewer people with diabetes had major vascular events per 1000 allocated statin therapy. INTERPRETATION Statin therapy should be considered for all diabetic individuals who are at sufficiently high risk of vascular events.
The Lancet | 2007
Jane Armitage
Statins are effective cholesterol-lowering drugs that reduce the risk of cardiovascular disease events (heart attacks, strokes, and the need for arterial revascularisation). Adverse effects from some statins on muscle, such as myopathy and rhabdomyolysis, are rare at standard doses, and on the liver, in increasing levels of transaminases, are unusual. Myopathy--muscle pain or weakness with blood creatine kinase levels more than ten times the upper limit of the normal range--typically occurs in fewer than one in 10,000 patients on standard statin doses. However, this risk varies between statins, and increases with use of higher doses and interacting drugs. Rhabdomyolysis is a rarer and more severe form of myopathy, with myoglobin release into the circulation and risk of renal failure. Stopping statin use reverses these side-effects, usually leading to a full recovery. Asymptomatic increases in concentrations of liver transaminases are recorded with all statins, but are not clearly associated with an increased risk of liver disease. For most people, statins are safe and well-tolerated, and their widespread use has the potential to have a major effect on the global burden of cardiovascular disease.
European Heart Journal | 2013
Richard Haynes; L. Jiang; Jemma C. Hopewell; Jianguo Li; F Chen; Sarah Parish; Martin J. Landray; Rory Collins; Jane Armitage; Colin Baigent; Zhengming Chen; Yuan-Tsong Chen; Terje R. Pedersen; Michael Hill
Aims Niacin has potentially favourable effects on lipids, but its effect on cardiovascular outcomes is uncertain. HPS2-THRIVE is a large randomized trial assessing the effects of extended release (ER) niacin in patients at high risk of vascular events. Methods and results Prior to randomization, 42 424 patients with occlusive arterial disease were given simvastatin 40 mg plus, if required, ezetimibe 10 mg daily to standardize their low-density lipoprotein (LDL)-lowering therapy. The ability to remain compliant with ER niacin 2 g plus laropiprant 40 mg daily (ERN/LRPT) for ∼1 month was then assessed in 38 369 patients and about one-third were excluded (mainly due to niacin side effects). A total of 25 673 patients were randomized between ERN/LRPT daily vs. placebo and were followed for a median of 3.9 years. By the end of the study, 25% of participants allocated ERN/LRPT vs. 17% allocated placebo had stopped their study treatment. The most common medical reasons for stopping ERN/LRPT were related to skin, gastrointestinal, diabetes, and musculoskeletal side effects. When added to statin-based LDL-lowering therapy, allocation to ERN/LRPT increased the risk of definite myopathy [75 (0.16%/year) vs. 17 (0.04%/year): risk ratio 4.4; 95% CI 2.6–7.5; P < 0.0001]; 7 vs. 5 were rhabdomyolysis. Any myopathy (definite or incipient) was more common among participants in China [138 (0.66%/year) vs. 27 (0.13%/year)] than among those in Europe [17 (0.07%/year) vs. 11 (0.04%/year)]. Consecutive alanine transaminase >3× upper limit of normal, in the absence of muscle damage, was seen in 48 (0.10%/year) ERN/LRPT vs. 30 (0.06%/year) placebo allocated participants. Conclusion The risk of myopathy was increased by adding ERN/LRPT to simvastatin 40 mg daily (with or without ezetimibe), particularly in Chinese patients whose myopathy rates on simvastatin were higher. Despite the side effects of ERN/LRPT, among individuals who were able to tolerate it for ∼1 month, three-quarters continued to take it for ∼4 years.
The Lancet | 2010
Jane Armitage; Louise Bowman; K Wallendszus; R Bulbulia; Kazem Rahimi; Richard Haynes; Sarah Parish; Richard Peto; R Collins
Summary Background Lowering of LDL cholesterol reduces major vascular events, but whether more intensive therapy safely produces extra benefits is uncertain. We aimed to establish efficacy and safety of more intensive statin treatment in patients at high cardiovascular risk. Methods We undertook a double-blind randomised trial in 12 064 men and women aged 18–80 years with a history of myocardial infarction. Participants were either currently on or had clear indication for statin therapy, and had a total cholesterol concentration of at least 3·5 mmol/L if already on a statin or 4·5 mmol/L if not. Randomisation to either 80 mg or 20 mg simvastatin daily was done centrally using a minimisation algorithm. Participants were assessed at 2, 4, 8, and 12 months after randomisation and then every 6 months until final follow-up. The primary endpoint was major vascular events, defined as coronary death, myocardial infarction, stroke, or arterial revascularisation. Analysis was by intention to treat. This study is registered, number ISRCTN74348595. Findings 6031 participants were allocated 80 mg simvastatin daily, and 6033 allocated 20 mg simvastatin daily. During a mean follow-up of 6·7 (SD 1·5) years, allocation to 80 mg simvastatin produced an average 0·35 (SE 0·01) mmol/L greater reduction in LDL cholesterol compared with allocation to 20 mg. Major vascular events occurred in 1477 (24·5%) participants allocated 80 mg simvastatin versus 1553 (25·7%) of those allocated 20 mg, corresponding to a 6% proportional reduction (risk ratio 0·94, 95% CI 0·88–1·01; p=0·10). There were no apparent differences in numbers of haemorrhagic strokes (24 [0·4%] vs 25 [0·4%]) or deaths attributed to vascular (565 [9·4%] vs 572 [9·5%]) or non-vascular (399 [6·6%] vs 398 [6·6%]) causes. Compared with two (0·03%) cases of myopathy in patients taking 20 mg simvastatin daily, there were 53 (0·9%) cases in the 80 mg group. Interpretation The 6% (SE 3·5%) reduction in major vascular events with a further 0·35 mmol/L reduction in LDL cholesterol in our trial is consistent with previous trials. Myopathy was increased with 80 mg simvastatin daily, but intensive lowering of LDL cholesterol can be achieved safely with other regimens. Funding Merck; The Clinical Trial Service Unit also receives funding from the UK Medical Research Council and the British Heart Foundation.BACKGROUND Lowering of LDL cholesterol reduces major vascular events, but whether more intensive therapy safely produces extra benefits is uncertain. We aimed to establish efficacy and safety of more intensive statin treatment in patients at high cardiovascular risk. METHODS We undertook a double-blind randomised trial in 12,064 men and women aged 18-80 years with a history of myocardial infarction. Participants were either currently on or had clear indication for statin therapy, and had a total cholesterol concentration of at least 3·5 mmol/L if already on a statin or 4·5 mmol/L if not. Randomisation to either 80 mg or 20 mg simvastatin daily was done centrally using a minimisation algorithm. Participants were assessed at 2, 4, 8, and 12 months after randomisation and then every 6 months until final follow-up. The primary endpoint was major vascular events, defined as coronary death, myocardial infarction, stroke, or arterial revascularisation. Analysis was by intention to treat. This study is registered, number ISRCTN74348595. FINDINGS 6031 participants were allocated 80 mg simvastatin daily, and 6033 allocated 20 mg simvastatin daily. During a mean follow-up of 6·7 (SD 1·5) years, allocation to 80 mg simvastatin produced an average 0·35 (SE 0·01) mmol/L greater reduction in LDL cholesterol compared with allocation to 20 mg. Major vascular events occurred in 1477 (24·5%) participants allocated 80 mg simvastatin versus 1553 (25·7%) of those allocated 20 mg, corresponding to a 6% proportional reduction (risk ratio 0·94, 95% CI 0·88-1·01; p=0·10). There were no apparent differences in numbers of haemorrhagic strokes (24 [0·4%] vs 25 [0·4%]) or deaths attributed to vascular (565 [9·4%] vs 572 [9·5%]) or non-vascular (399 [6·6%] vs 398 [6·6%]) causes. Compared with two (0·03%) cases of myopathy in patients taking 20 mg simvastatin daily, there were 53 (0·9%) cases in the 80 mg group. INTERPRETATION The 6% (SE 3·5%) reduction in major vascular events with a further 0·35 mmol/L reduction in LDL cholesterol in our trial is consistent with previous trials. Myopathy was increased with 80 mg simvastatin daily, but intensive lowering of LDL cholesterol can be achieved safely with other regimens. FUNDING Merck; The Clinical Trial Service Unit also receives funding from the UK Medical Research Council and the British Heart Foundation.
The Lancet | 2016
Rory Collins; Christina Reith; Jonathan Emberson; Jane Armitage; Colin Baigent; L Blackwell; Roger S. Blumenthal; John Danesh; George Davey Smith; David L. DeMets; Stephen Evans; Malcolm Law; Stephen MacMahon; Seth S. Martin; Bruce Neal; Neil Poulter; David Preiss; Paul M. Ridker; Ian Roberts; Anthony Rodgers; Peter Sandercock; Kenneth F. Schulz; Peter Sever; John Simes; Liam Smeeth; Nicholas J. Wald; Salim Yusuf; Richard Peto
This Review is intended to help clinicians, patients, and the public make informed decisions about statin therapy for the prevention of heart attacks and strokes. It explains how the evidence that is available from randomised controlled trials yields reliable information about both the efficacy and safety of statin therapy. In addition, it discusses how claims that statins commonly cause adverse effects reflect a failure to recognise the limitations of other sources of evidence about the effects of treatment. Large-scale evidence from randomised trials shows that statin therapy reduces the risk of major vascular events (ie, coronary deaths or myocardial infarctions, strokes, and coronary revascularisation procedures) by about one-quarter for each mmol/L reduction in LDL cholesterol during each year (after the first) that it continues to be taken. The absolute benefits of statin therapy depend on an individuals absolute risk of occlusive vascular events and the absolute reduction in LDL cholesterol that is achieved. For example, lowering LDL cholesterol by 2 mmol/L (77 mg/dL) with an effective low-cost statin regimen (eg, atorvastatin 40 mg daily, costing about £2 per month) for 5 years in 10 000 patients would typically prevent major vascular events from occurring in about 1000 patients (ie, 10% absolute benefit) with pre-existing occlusive vascular disease (secondary prevention) and in 500 patients (ie, 5% absolute benefit) who are at increased risk but have not yet had a vascular event (primary prevention). Statin therapy has been shown to reduce vascular disease risk during each year it continues to be taken, so larger absolute benefits would accrue with more prolonged therapy, and these benefits persist long term. The only serious adverse events that have been shown to be caused by long-term statin therapy-ie, adverse effects of the statin-are myopathy (defined as muscle pain or weakness combined with large increases in blood concentrations of creatine kinase), new-onset diabetes mellitus, and, probably, haemorrhagic stroke. Typically, treatment of 10 000 patients for 5 years with an effective regimen (eg, atorvastatin 40 mg daily) would cause about 5 cases of myopathy (one of which might progress, if the statin therapy is not stopped, to the more severe condition of rhabdomyolysis), 50-100 new cases of diabetes, and 5-10 haemorrhagic strokes. However, any adverse impact of these side-effects on major vascular events has already been taken into account in the estimates of the absolute benefits. Statin therapy may cause symptomatic adverse events (eg, muscle pain or weakness) in up to about 50-100 patients (ie, 0·5-1·0% absolute harm) per 10 000 treated for 5 years. However, placebo-controlled randomised trials have shown definitively that almost all of the symptomatic adverse events that are attributed to statin therapy in routine practice are not actually caused by it (ie, they represent misattribution). The large-scale evidence available from randomised trials also indicates that it is unlikely that large absolute excesses in other serious adverse events still await discovery. Consequently, any further findings that emerge about the effects of statin therapy would not be expected to alter materially the balance of benefits and harms. It is, therefore, of concern that exaggerated claims about side-effect rates with statin therapy may be responsible for its under-use among individuals at increased risk of cardiovascular events. For, whereas the rare cases of myopathy and any muscle-related symptoms that are attributed to statin therapy generally resolve rapidly when treatment is stopped, the heart attacks or strokes that may occur if statin therapy is stopped unnecessarily can be devastating.
BMJ | 1998
J L Tang; Jane Armitage; Tim Lancaster; C A Silagy; Godfrey Fowler; H A W Neil
Abstract Objectives: To estimate the efficacy of dietary advice to lower blood total cholesterol concentration in free-living subjects and to investigate the efficacy of different dietary recommendations. Design: Systematic overview of 19 randomised controlled trials including 28 comparisons. Subjects: Free-living subjects. Interventions: Individualised dietary advice to modify fat intake. Main outcome measure: Percentage difference in blood total cholesterol concentration between the intervention and control groups. Results: The percentage reduction in blood total cholesterol attributable to dietary advice after at least six months of intervention was 5.3% (95% confidence interval 4.7% to 5.9%). Including both short and long duration studies, the effect was 8.5% at 3 months and 5.5% at 12 months. Diets equivalent to the step 2 diet of the American Heart Association were of similar efficacy to diets that aimed to lower total fat intake or to raise the polyunsaturated to saturated fatty acid ratio. These diets were moderately more effective than the step 1 diet of the American Heart Association (6.1% v 3.0% reduction in blood total cholesterol concentration; P<0.0001). On the basis of reported food intake, the targets for dietary change were seldom achieved. The observed reductions in blood total cholesterol concentrations in the individual trials were consistent with those predicted from dietary intake on the basis of the Keys equation. Conclusions: Individualised dietary advice for reducing cholesterol concentration is modestly effective in free-living subjects. More intensive diets achieve a greater reduction in serum cholesterol concentration. Failure to comply fully with dietary recommendations is the likely explanation for this limited efficacy. Key messages Results from metabolic ward studies suggest that dietary change can reduce blood cholesterol concentrations by up to 15% In free-living subjects the standard step 1 diet of the American Heart Association lowers cholesterol concentration by about 3%, and about another 3% can be achieved with more intensive diets Difficulties in complying with the prescribed dietary change explain the failure to achieve the expected reductions in cholesterol concentrations It is important to be realistic about the reductions in cardiovascular risk that can be achieved by individual dietary counselling
JAMA | 2010
Jane Armitage; Louise Bowman; Robert Clarke; K Wallendszus; R Bulbulia; Kazem Rahimi; Richard Haynes; Sarah Parish; Peter Sleight; Richard Peto; R Collins
CONTEXT Blood homocysteine levels are positively associated with cardiovascular disease, but it is uncertain whether the association is causal. OBJECTIVE To assess the effects of reducing homocysteine levels with folic acid and vitamin B(12) on vascular and nonvascular outcomes. DESIGN, SETTING, AND PATIENTS Double-blind randomized controlled trial of 12,064 survivors of myocardial infarction in secondary care hospitals in the United Kingdom between 1998 and 2008. INTERVENTIONS 2 mg folic acid plus 1 mg vitamin B(12) daily vs matching placebo. MAIN OUTCOME MEASURES First major vascular event, defined as major coronary event (coronary death, myocardial infarction, or coronary revascularization), fatal or nonfatal stroke, or noncoronary revascularization. RESULTS Allocation to the study vitamins reduced homocysteine by a mean of 3.8 micromol/L (28%). During 6.7 years of follow-up, major vascular events occurred in 1537 of 6033 participants (25.5%) allocated folic acid plus vitamin B(12) vs 1493 of 6031 participants (24.8%) allocated placebo (risk ratio [RR], 1.04; 95% confidence interval [CI], 0.97-1.12; P = .28). There were no apparent effects on major coronary events (vitamins, 1229 [20.4%], vs placebo, 1185 [19.6%]; RR, 1.05; 95% CI, 0.97-1.13), stroke (vitamins, 269 [4.5%], vs placebo, 265 [4.4%]; RR, 1.02; 95% CI, 0.86-1.21), or noncoronary revascularizations (vitamins, 178 [3.0%], vs placebo, 152 [2.5%]; RR, 1.18; 95% CI, 0.95-1.46). Nor were there significant differences in the numbers of deaths attributed to vascular causes (vitamins, 578 [9.6%], vs placebo, 559 [9.3%]) or nonvascular causes (vitamins, 405 [6.7%], vs placebo, 392 [6.5%]) or in the incidence of any cancer (vitamins, 678 [11.2%], vs placebo, 639 [10.6%]). CONCLUSION Substantial long-term reductions in blood homocysteine levels with folic acid and vitamin B(12) supplementation did not have beneficial effects on vascular outcomes but were also not associated with adverse effects on cancer incidence. TRIAL REGISTRATION isrctn.org Identifier: ISRCTN74348595.
American Heart Journal | 2010
Colin Baigent; M Landray; Christina Reith; T. Dasgupta; Jonathan Emberson; William G. Herrington; Darrell V. Lewis; Marion Mafham; Rory Collins; C. Bray; Yiping Chen; A. Baxter; A. Young; Michael Hill; C. Knott; A. Cass; Bo Feldt-Rasmussen; B. Fellstroem; R. Grobbee; C. Groenhagen-Riska; M. Haas; Hallvard Holdaas; Lai Seong Hooi; Lixin Jiang; Bertram L. Kasiske; Udom Krairittichai; Adeera Levin; Z. Massy; Vladimir Tesar; Robert J. Walker
BACKGROUND Lowering low-density lipoprotein (LDL) cholesterol with statin therapy has been shown to reduce the incidence of atherosclerotic events in many types of patient, but it remains uncertain whether it is of net benefit among people with chronic kidney disease (CKD). METHODS Patients with advanced CKD (blood creatinine ≥ 1.7 mg/dL [≥ 150 μmol/L] in men or ≥ 1.5 mg/dL [ ≥ 130 μmol/L] in women) with no known history of myocardial infarction or coronary revascularization were randomized in a ratio of 4:4:1 to ezetimibe 10 mg plus simvastatin 20 mg daily versus matching placebo versus simvastatin 20 mg daily (with the latter arm rerandomized at 1 year to ezetimibe 10 mg plus simvastatin 20 mg daily vs placebo). The key outcome will be major atherosclerotic events, defined as the combination of myocardial infarction, coronary death, ischemic stroke, or any revascularization procedure. RESULTS A total of 9,438 CKD patients were randomized, of whom 3,056 were on dialysis. Mean age was 61 years, two thirds were male, one fifth had diabetes mellitus, and one sixth had vascular disease. Compared with either placebo or simvastatin alone, allocation to ezetimibe plus simvastatin was not associated with any excess of myopathy, hepatic toxicity, or biliary complications during the first year of follow-up. Compared with placebo, allocation to ezetimibe 10 mg plus simvastatin 20 mg daily yielded average LDL cholesterol differences of 43 mg/dL (1.10 mmol/L) at 1 year and 33 mg/dL (0.85 mmol/L) at 2.5 years. Follow-up is scheduled to continue until August 2010, when all patients will have been followed for at least 4 years. CONCLUSIONS SHARP should provide evidence about the efficacy and safety of lowering LDL cholesterol with the combination of ezetimibe and simvastatin among a wide range of patients with CKD.