Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jane Bayani is active.

Publication


Featured researches published by Jane Bayani.


Nature | 2004

Identification of human brain tumour initiating cells

Sheila K. Singh; Cynthia Hawkins; Ian D. Clarke; Jeremy A. Squire; Jane Bayani; Takuichiro Hide; R. Mark Henkelman; Michael D. Cusimano; Peter Dirks

The cancer stem cell (CSC) hypothesis suggests that neoplastic clones are maintained exclusively by a rare fraction of cells with stem cell properties. Although the existence of CSCs in human leukaemia is established, little evidence exists for CSCs in solid tumours, except for breast cancer. Recently, we prospectively isolated a CD133+ cell subpopulation from human brain tumours that exhibited stem cell properties in vitro. However, the true measures of CSCs are their capacity for self renewal and exact recapitulation of the original tumour. Here we report the development of a xenograft assay that identified human brain tumour initiating cells that initiate tumours in vivo. Only the CD133+ brain tumour fraction contains cells that are capable of tumour initiation in NOD-SCID (non-obese diabetic, severe combined immunodeficient) mouse brains. Injection of as few as 100 CD133+ cells produced a tumour that could be serially transplanted and was a phenocopy of the patients original tumour, whereas injection of 105 CD133- cells engrafted but did not cause a tumour. Thus, the identification of brain tumour initiating cells provides insights into human brain tumour pathogenesis, giving strong support for the CSC hypothesis as the basis for many solid tumours, and establishes a previously unidentified cellular target for more effective cancer therapies.


Genes, Chromosomes and Cancer | 2003

High‐resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays

Jeremy A. Squire; Jianming Pei; Paula Marrano; Ben Beheshti; Jane Bayani; Gloria Lim; Laura Moldovan; Maria Zielenska

Conventional cytogenetic and comparative genomic hybridization (CGH) studies have shown that osteosarcomas (OSs) are characterized by complex structural and numerical chromosomal alterations and gene amplification. In this study, we used high‐resolution CGH to investigate recurrent patterns of genomic imbalance by use of DNA derived from nine OS tumors hybridized to a 19,200‐clone cDNA microarray. In six OSs, there was copy number gain or amplification of 6p, with a minimal region of gain centering on segment 6p12.1. In seven OSs, the pattern of amplification affecting chromosome arm 8q showed high‐level gains of 8q12–21.3 and 8q22–q23, with amplification of the MYC oncogene at 8q24.2. Seven OSs showed copy number gain or amplification of 17p between the loci bounded by GAS7 and PMI (17p11.2–17p12), and three of these tumors also showed small losses at 17p13, including the region containing TP53. An in silico analysis of the distribution of segmental duplications (duplicons) in this region identified a large number of tracts consisting of paralogous sequences mapping to the 17p region, encompassing the region of deletions and amplifications in OS. Interestingly, within this same region there were clusters of duplicons and several genes that are expressed during bone morphogenesis and in OS. In summary, microarray CGH analysis of the chromosomal imbalances of OS confirm the overall pattern observed by use of metaphase CGH and provides a more precise refinement of the boundaries of genomic gains and losses that characterize this tumor.


Cancer Genetics and Cytogenetics | 2001

Molecular cytogenetic analysis of non-small cell lung carcinoma by spectral karyotyping and comparative genomic hybridization

Ming S. Tsao; Jane Bayani; Frances A. Shepherd; Jeremy A. Squire

The overall pattern of chromosomal changes detected by spectral karyotype (SKY) analysis of two cell lines of each major histological subtype of NSCLC, namely squamous cell carcinoma (SQCC) and adenocarcinoma (ADC), indicated a greater degree of chromosomal rearrangement, than was present or predicted by either comparative genomic hybridization (CGH) or G-banding analysis alone. To investigate these observations, CGH was used to screen DNA derived from 8 primary tumors and 15 cell lines. The results indicated that the most frequently gained chromosome arms were 5p (70%), 8q (65%), 15q (52%), 20q (48%), 1q (43%), 19q (39%), 3q (35%), and 11q (35%). Chromosomal losses were less frequently observed, and included 18q (39%), 9 (35%), 6q (30%), 13q (21%), 5q12-q32 (17%), and 19p (17%). Amplifications were found on 2p23-p24, 3q24-q27, 5p, 6cen-p21.1, 6q26, 7p21, 7q31, 8q, 11q13-qter, 20q12-q13.2. Comparison between CGH findings of the two major histological subtypes showed that gains at 1q22-q32.2, 15q, 20q, and losses at 6q, 13q, and 18q was common in ADCs, whereas SQCCs exhibited gains/amplifications at 3q. Distal 8q was gained by CGH in 65% of tumors of both subtypes. Low level MYCC amplification was confirmed by direct fluorescence in situ hybridization (FISH) analysis. The pattern of overall chromosomal changes detected using combinations of molecular cytogenetic analytical methods suggests that it will be easier to detect recurrent subtype-dependent aberrations in NSCLC.


Genes, Chromosomes and Cancer | 2003

Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas.

Jane Bayani; Maria Zielenska; Ajay Pandita; Khaldoun Al-Romaih; Jana Karaskova; Karen Harrison; Julia A. Bridge; Poul H. Sorensen; Paul S. Thorner; Jeremy A. Squire

Conventional cytogenetic studies have shown that osteosarcomas (OSs) are often highly aneuploid, with a large number of both structural and numerical chromosomal alterations. To investigate the complexity of OS karyotypes in detail, we applied spectral karyotyping (SKY) to a series of 14 primary OS tumors and four established OS cell lines. A total of 531 rearrangements were identified by SKY, of which 300 breakpoints could be assigned to a specific chromosome band. There was an average of 38.5 breakpoints identified by SKY per primary tumor. Chromosome 20 was involved in a disproportionately high number of structural rearrangements, with 38 different aberrations being detected. Chromosomal rearrangements between chromosomes 20 and 8 were evident in four tumors. FISH analysis using a 20q13 subtelomeric probe identified frequent involvement of 20q in complex structural rearrangements of OS cell lines. Characterization of the structural aberrations of chromosomes 8 and 17 by use of SKY demonstrated frequent duplication or partial gains of chromosome bands 8q23–24 and 17p11–13. Other chromosomes frequently involved in structural alteration were chromosomes 1 (47 rearrangements) and 6 (38 rearrangements). Centromeric rearrangements often involving chromosomes 1, 6, 13, 14, 17, and 20 were present. Four of the 14 primary OS tumors were characterized by nonclonal changes that included both structural and numerical alterations. In summary, OS tumors have a very high frequency of structural and numerical alterations, compounded by gross changes in ploidy. This intrinsic karyotype instability leads to a diversity of rearrangements and the acquisition of composite chromosomal rearrangements, with the highest frequency of alteration leading to gain of 8q23–24 and 17p11–13 and rearrangement of 20q. These findings suggest that specific sequences mapping to these chromosomal regions will likely have a role in the development and progression of OS.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity

Mona Meyer; Jüri Reimand; Xiaoyang Lan; Renee Head; Xueming Zhu; Michelle Kushida; Jane Bayani; Jessica C. Pressey; Anath C. Lionel; Ian Clarke; Michael D. Cusimano; Jeremy A. Squire; Stephen W. Scherer; Mark Bernstein; Melanie A. Woodin; Gary D. Bader; Peter Dirks

Significance Glioblastoma is an incurable brain tumor. It is characterized by intratumoral phenotypic and genetic heterogeneity, but the functional significance of this heterogeneity is unclear. We devised an integrated functional and genomic strategy to obtain single cell-derived tumor clones directly from patient tumors to identify mechanisms of aggressive clone behavior and drug resistance. Genomic analysis of single clones identified genes associated with clonal phenotypes. We predict that integration of functional and genomic analysis at a clonal level will be essential for understanding evolution and therapeutic resistance of human cancer, and will lead to the discovery of novel driver mechanisms and clone-specific cancer treatment. Glioblastoma (GBM) is a cancer comprised of morphologically, genetically, and phenotypically diverse cells. However, an understanding of the functional significance of intratumoral heterogeneity is lacking. We devised a method to isolate and functionally profile tumorigenic clones from patient glioblastoma samples. Individual clones demonstrated unique proliferation and differentiation abilities. Importantly, naïve patient tumors included clones that were temozolomide resistant, indicating that resistance to conventional GBM therapy can preexist in untreated tumors at a clonal level. Further, candidate therapies for resistant clones were detected with clone-specific drug screening. Genomic analyses revealed genes and pathways that associate with specific functional behavior of single clones. Our results suggest that functional clonal profiling used to identify tumorigenic and drug-resistant tumor clones will lead to the discovery of new GBM clone-specific treatment strategies.


Laboratory Investigation | 2005

An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line

Yuwei Wang; Hui Xue; Jean-Claude Cutz; Jane Bayani; Nasrin R. Mawji; Wilfred G Chen; Lester Goetz; Simon W. Hayward; Marianne D. Sadar; C. Blake Gilks; Peter W. Gout; Jeremy A. Squire; Gerald R. Cunha; Yuzhuo Wang

Metastasis is the major cause of prostate cancer deaths and there is a need for clinically relevant in vivo models allowing elucidation of molecular and cellular mechanisms underlying metastatic behavior. Here we describe the development of a new in vivo model system for metastatic prostate cancer. Pieces of prostate cancer tissue from a patient were grafted in testosterone-supplemented male NOD-SCID mice at the subrenal capsule graft site permitting high tumor take rates. After five serial transplantations, the tumor tissues were grafted into mouse prostates. Resulting tumors and suspected metastatic lesions were subjected to histopathological and immunohistochemical analysis. Samples of metastatic tissue were regrafted in mouse anterior prostates and their growth and spread examined, leading to isolation from lymph nodes of a metastatic subline, PCa1-met. Orthotopic grafting of PCa1-met tissue in 47 hosts led in all cases to metastases to multiple organs (lymph nodes, lung, liver, kidney, spleen and, notably, bone). Histopathological analysis showed strong similarity between orthotopic grafts and their metastases. The latter were of human origin as indicated by immunostaining using antibodies against human mitochondria, androgen receptor, prostate-specific antigen and Ki-67. Spectral karyotyping showed few chromosomal alterations in the PCa1-met subline. This study indicates that transplantable subrenal capsule xenografts of human prostate cancer tissue in NOD-SCID mice can, as distinct from primary cancer tissue, be successfully grown in the orthotopic site. Orthotopic xenografts of the transplantable tumor lines and metastatic sublines can be used for studying various aspects of metastatic prostate cancer, including metastasis to bone.


Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2002

Molecular cytogenetic analysis of head and neck squamous cell carcinoma: By comparative genomic hybridization, spectral karyotyping, and expression array analysis†

Jeremy A. Squire; Jane Bayani; Lianne Unwin; Jason Tokunaga; Christina MacMillan; Jonathan C. Irish; Dale H. Brown; Patrick J. Gullane; Suzanne Kamel-Reid

A combination of molecular cytogenetic and expression array analysis has been performed on head and neck squamous cell carcinoma (HNSCC) of the oral cavity and supraglottis. These studies were performed to identify consensus regions of chromosomal imbalance and structural rearrangement to determine whether genes located in these genomic regions are subject to alterations in gene expression. Such combinatorial studies may help to identify recurrent patterns of altered gene expression in the context of specific chromosomal changes.


Cancer Genetics and Cytogenetics | 2001

Comparative genomic hybridization analysis identifies gains of 1p35 p36 and chromosome 19 in osteosarcoma

Maria Zielenska; Jane Bayani; Ajay Pandita; Silvia Regina Caminada de Toledo; Paula Marrano; Joyce Anderson Duffles Andrade; Antonio Sergio Petrilli; Paul S. Thorner; Poul H. Sorensen; Jeremy A. Squire

Osteosarcomas (OS) are aggressive tumors of the bone and often have a poor prognosis. Conventional cytogenetic analyses of OS have revealed highly complex karyotypes, with numerous abnormalities. In this study, we analyzed 18 untreated OS tumors from 17 patients of the younger incidence age group by comparative genomic hybridization (CGH), 4 tumors by spectral karyotyping (SKY) and fluorescence in situ hybridization (FISH). Comparative genomic hybridization identified frequent copy number changes of the chromosomal region 1p (10/17) and gain of part or all of chromosome 19(8/17). In addition gains were observed at 5p(3/17), 8q(3/17), 16p(3/17), and 17p(5/17); and losses at chromosomes 2q(3/17), 10(4/17) and 13(3/17). High level gains were detected in the 8q23 approximately q24 region in two tumors as well as at 17p in one primary and a metastatic tumor. Minimal regions of gain were present at 1p35 approximately p36.3 (8/17); 5p14 approximately p15.2 (3/17), and 8q22 approximately q24.3 (3/17). SKY analysis demonstrated that OS has a complex pattern of clonal and non-clonal rearrangements and helped confirm the structural basis for the imbalances detected by CGH. Spectral karyotyping confirmed an overall pattern of chromosomal gain affecting 1p in all four tumors. Fluorescence in situ hybridization analysis from these tumors confirmed the gain of the 1p36 region in 2 tumors as determined by CGH analysis as well as the amplification of 8q.


Human Pathology | 2000

Recurrent anomalies of 6q25 in chondromyxoid fibroma

Aida Safar; Marilu Nelson; James R. Neff; Gerhard Maale; Jane Bayani; Jeremy A. Squire; Julia A. Bridge

Chondromyxoid fibroma is a rare benign bone tumor most commonly arising in the metaphysis of long bones in young adults. Histopathologically, chondromyxoid fibroma may be difficult to distinguish from other cartilaginous neoplasms. Recently, a pericentric inversion of chromosome 6 [inv(6)(p25q13)] has been proposed as a specific genetic marker for chondromyxoid fibroma. In this study, cytogenetic and spectral karyotypic analyses of 2 chondromyxoid fibroma cases showed clonal abnormalities of chromosome 6 but at a breakpoint on the long arm (q25) distal to that described in the pericentric inversion. These findings suggest that several distinct breakpoints on chromosome 6 are nonrandomly involved in chondromyxoid fibroma.


Clinical Cancer Research | 2006

Establishment in Severe Combined Immunodeficiency Mice of Subrenal Capsule Xenografts and Transplantable Tumor Lines from a Variety of Primary Human Lung Cancers: Potential Models for Studying Tumor Progression–Related Changes

Jean-Claude Cutz; Jun Guan; Jane Bayani; Maisa Yoshimoto; Hui Xue; Margaret Sutcliffe; John C. English; Julia Flint; Jean LeRiche; John Yee; Jeremy A. Squire; Peter W. Gout; Stephen Lam; Yuzhuo Wang

Purpose: Lung cancer is a biologically diverse disease and relevant models reflecting its diversity would facilitate the improvement of existing therapies. With a view to establishing such models, we developed and evaluated xenografts of a variety of human lung cancers. Experimental Design: Using nonobese diabetic/severe combined immunodeficiency mice, subrenal capsule xenografts were generated from primary lung cancer tissue, including moderately and poorly differentiated squamous cell carcinoma, adenocarcinoma, adenosquamous carcinoma, small cell carcinoma, large cell undifferentiated carcinoma, and carcinosarcoma. After 4 to 12 weeks, xenografts were harvested for serial transplantation and comparison with the original tissue via histologic, chromosomal, and cytogenetic analyses. Results: Xenografts were successfully established. H&E staining showed that xenografts retained major histologic features of the original cancers. Immunohistochemistry and fluorescence in situ hybridization confirmed the human origin of the tumor cells and development in xenografts of murine supportive stroma. Four transplantable lines were developed from rapidly growing tumors (>5 generations), i.e., a small cell lung carcinoma, large cell undifferentiated carcinoma, pulmonary carcinosarcoma, and squamous cell carcinoma. Analyses including spectral karyotyping, comparative genomic hybridization, and fluorescence in situ hybridization, revealed that the xenografts were genetically similar to the original tumors, showing chromosomal abnormalities consistent with karyotypic changes reported for lung cancer. Conclusions: The subrenal capsule xenograft approach essentially provides a living tumor bank derived from patient material and a means for isolating and expanding specific cell populations. The transplantable tumor lines seem to provide good models for studying various aspects of tumor progression and a platform for developing novel therapeutic regimens, with the possibility of patient-tailored therapies.

Collaboration


Dive into the Jane Bayani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jms Bartlett

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. S. Bartlett

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paula Marrano

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge